期刊文献+

基于边缘模式和主导学习框架的相似纹理分类 被引量:1

Similar texture image classification using edge pattern and dominant learning framework
下载PDF
导出
摘要 边缘是进行相似纹理图像分类的有效特征之一,为了提高边缘检测精度,使用可变化的局部边缘模式(Varied Local Edge Pattern,VLEP)算法,利用像元及其近邻的灰度变化进行区域统计,同时从多尺度和多方向的角度提取纹理边缘特征。然而,当图像分辨率发生变化,或图像受到光照、反射的影响时,纹理计算可能会出现较大偏差。为此,在VLEP算法的基础上,提出主导学习框架相似纹理分类方法,通过构建全局主导模式集,解决纹理计算偏差导致的类间距离小和类内距离大的问题。实验结果表明,主导边缘模式思想可以有效地提高相似纹理图像的分类准确率。 Edge is an effective feature for similar texture classification. For better improving the edge detection accuracy,Varied Local Edge Pattern(VLEP)algorithm is used to extract the texture edge feature in which multi-scale and multidirection properties are taken into account. Generally, texture feature extraction is based on regional statistics of the intensity change between the pixel and its neighbors. However, large deviation often exists, especially when the image resolution changes, or when the image is lighted and reflected. Therefore, in this paper dominant learning framework approach based on the VLEP is proposed to classify similar texture images, which constructs global dominant set to solve the problem of small inter-class and large intra-class distance resulting from the above deviation. The experimental results show that the proposed method can effectively improve the classification performance of similar texture image.
出处 《计算机工程与应用》 CSCD 北大核心 2017年第23期97-101,207,共6页 Computer Engineering and Applications
基金 北京市自然科学基金(No.4162018) 北京市委组织部青年拔尖人才培养项目(No.2014000026833ZK14) 北京市属高等学校高层次人才引进与培养计划项目(No.CIT&TCD201504010) 2016年研究生科研能力提升计划项目
关键词 纹理分类 可变局部边缘模式 主导学习框架 全局主导模式集 texture classification Varied Local Edge Pattern(VLEP) dominant learning framework global dominant pattern set
  • 相关文献

参考文献1

二级参考文献14

  • 1邢强,袁保宗,唐晓芳.一种基于加权色彩直方图的快速图像检索方法[J].计算机研究与发展,2005,42(11):1903-1910. 被引量:12
  • 2张翔,肖小玲,徐光祐.模糊支持向量机中隶属度的确定与分析[J].中国图象图形学报,2006,11(8):1188-1192. 被引量:38
  • 3张国云,郭龙源,吴健辉,胡文静.计算机视觉与图像识别[M].北京:科学出版社,2012.
  • 4Huang C,Davis L S, Townshend J R G. An assessment o{ sup- port vector machines for land cover classification[J]. Int. J. Re- mote Sens. , 2002(23) : 725-749.
  • 5Li X L. Image retrieval based on perceptive weighted color blocks[J]. Pattern Recognition Letters, 2003, 24 ( 12 ) : 1935- 1941.
  • 6FEihhauser W,Konig P. Does luminance:constrast contribute to a saliency map for overt visual attention[J]. European Journal of Neuroscience, 2003,17,1089-1097.
  • 7Achanta R, Hemami S, Estrada E, et al. Salient regiondetection and segmentation[C]//Proceedings of the 6th International Conference on Computer Vision Systems, Santorini, 2008 : 66-75.
  • 8Hideyuki A, Shun)i M, Takashi Y. Textural Features Corr esponding to Visual Perception[J]. IEEE Transactions on Sys terns,Man and Cybernetics, 1978,8(6):460-473.
  • 9Rosin P L. Unimodal thresholding [J]. Pattern Recognition, 2001,34(11) : 2083-2096.
  • 10王向阳,杨红颖,郑宏亮,吴俊峰.基于视觉权值的分块颜色直方图图像检索算法[J].自动化学报,2010,36(10):1489-1492. 被引量:35

共引文献5

同被引文献15

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部