期刊文献+

基于混合受限玻尔兹曼机的肺结节良恶性诊断

Diagnosis of benign and malignant lung nodules based on hybrid restricted Boltzmann machine
下载PDF
导出
摘要 针对传统计算机辅助诊断中肺结节的特征提取方法依靠人工设计、操作复杂、识别率低等问题,提出了一种基于混合受限玻尔兹曼机的肺结节良恶性诊断方法。首先采用多层无监督卷积受限玻尔兹曼机自动对肺结节图像进行特征学习,然后利用分类受限玻尔兹曼机对获得的特征进行良恶性分类。为避免分类受限玻尔兹曼机在训练中出现的特征同质化问题,引入了交叉熵稀疏惩罚对其进行优化。实验结果表明,该方法有效避免了手动特征提取的复杂性,在肺结节良恶性分类的准确率、敏感性、特异性、ROC曲线下面积值上均优于传统诊断方法。 For a series of problems in traditional computer-aided diagnosis methods, such as features extraction of lung nodules relying on the manual design, complex operation, low recognition rate, and so on, a diagnosis method of benign and malignant lung nodules based on hybrid restricted Boltzmann machine is proposed. Firstly, multilayer unsupervised convolutional restricted Boltzmann machine is applied in features learning from lung nodules images. Then, these features are used as the input of classification restricted Boltzmann machine to classify benign and malignant lung nodules. In order to avoid the problem of features homogenization during the classification restricted Boltzmann machine training, cross entropy sparse penalty is added to optimize it. Experimental results show that this method can effectively avoid the complexity of manual feature extraction. And it is superior to the traditional diagnostic methods in the accuracy, sensitivity,specificity and area under ROC curve values of classification of benign and malignant lung nodules.
出处 《计算机工程与应用》 CSCD 北大核心 2017年第23期153-158,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61540007 No.61373100) 国家重点实验室开放基金(No.BUAA-VR-15KF02 No.BUAA-VR-16KF13)
关键词 受限玻尔兹曼机 肺结节 良恶性诊断 计算机辅助诊断 restricted Boltzmann machine lung nodules benign and malignant diagnosis computer-aided diagnosis
  • 相关文献

参考文献1

二级参考文献26

  • 1Reeves AP,Kostis WJ.Computer-aided diagnosis for lung cancer (Review).Radiol Clin North Am,2000,38:497-509.
  • 2Giger M,MacMahon H.Image processing and computer-aided diagnosis(Review).Radiol Clin North Am,1996,34:565-596.
  • 3Armato SG 3rd,Altman MB,Wilkie J,et al.Automated lung nodule classification following automated nodule detection on CT:a serial approach.Med Phys,2003,30:1188-1197.
  • 4MacMahon H,Engelmann R,Behlen FM,et al.Computer-aided diagnosis of pulmonary nodules:results of a large-scale observer test.Radiology,1999,213:723-726.
  • 5Johkoh T,Kozuka T,Tomiyama N,et al.Temporal subtraction for detection of solitary pulmonary nodules on chest radiographs:evaluation of a commercially available computer-aided diagnosis system.Radiology,2002,223:806-811.
  • 6Abe H,MacMahon H,Engelmann R,et al.Computer-aided diagnosis in radiology:results of large-scale observer tests at the 1996-2001 RSNA scientific assemblies.Radiographics,2003,23:255-265.
  • 7Nakamura K,Yoshida H,Engelmann R,et al.Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks.Radiology,2000,214:823-830.
  • 8Shiraishi J,Abe H,Engelmann R,et al.Computer-aided diagnosis to distinguish benign from malignant solitary pulmonary nodules on radiographs:ROC analysis of radiologists′performance--initial experience.Radiology,2003,227:469-474.
  • 9Aoyama M,Li Q,Katsuragawa S,et al.Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images.Med Phys,2002,29:701-708.
  • 10Wormanns D,Fiebich M,Saidi M,et al.Automatic detection of pulmonary nodules at spiral CT:clinical application of a computer-aided diagnosis system.Eur Radiol,2002,12:1052-1057.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部