期刊文献+

基于距离测度学习的AP聚类图像标注 被引量:2

Image annotation by affinity propagation based on distance metric learning
下载PDF
导出
摘要 针对有效利用图像底层视觉特征和图像语义特征进行图像标注,提出一种改进的AP(Affinity Propagation)聚类标注模型。首先采用半监督距离测度学习算法,融合图像语义信息,训练得到新的距离测度。然后使用新的距离测度对每一类图像进行AP聚类,生成各类图像的聚类中心,计算待标注图像到各类图像聚类中心的平均距离,确定待标注图像类别。最后计算待标注图像到类内各个聚类中心的距离,确定待标注图像类内类别,统计该类别下图像的标注词,作为待标注图像的标注词。在Corel5K和NUS-WIDE数据集上进行了实验,经验证,该方法有效提高了标注精度。 It annotates the image for effective use of image low-level visual feature and semantic feature and puts forward a kind of improved affinity propagation cluster annotation model. Firstly, it uses the semi-supervised distance metric learning algorithm to acquire new distance measure after training combined with image semantic information. Then it uses new distance measure to cluster image with affinity propagation for every kind of images, generates cluster center of various kinds of images, calculates the average distance from will-be annotated images to cluster center of various kinds of images and determines the category of will-be annotated images. Finally, it calculates the distance from will-be annotated images to various kinds of intra-class cluster center, determines the intra-class category of will-be annotated images and summarizes the marked words of this kind image as marked words of will-be annotated images. After experiments on databases of Corel5 K and NUS-WIDE, it is verified that this method is successful to improve the accuracy of image annotation.
出处 《计算机工程与应用》 CSCD 北大核心 2017年第23期159-164,207,共7页 Computer Engineering and Applications
基金 网络文化与数字传播北京市重点实验室开放课题(No.ICDD201504) 国家自然科学基金(No.61271304) 北京成像技术高精尖创新中心项目(No.BAICIT-2016003) 2014年度国家社会科学基金委托课题(No.14@ZH036)
关键词 距离测度学习 近邻传播(AP)聚类算法 图像标注 distance metric learning Affinity Propagation(AP) image annotation
  • 相关文献

参考文献11

二级参考文献138

  • 1[1]Fukunage K.Introduction to Statistical Pattern Recognition[M].2nd edition.Boston:Academic Press,1990.
  • 2[2]Boyd S,Vandenberghe L.Convex optimization[M].New York:Cambridge University Press,2006.
  • 3[3]Turk M,Pentland A.Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 4[4]Belhumeur P N,Hespanda J,Kriegeman D.Eigenfaces vs.Fisherfaces:Recognition Using Class Specific Linear Projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 5[5]Xing E P,Ng A Y,Jordan M I,et al.Distance metric learning with application to clustering with side-information[M]// Advances in neural information processing systems 15.Cambridge,MA:MIT Press,2003.
  • 6[6]Kwok J T,Tsang I W.Learning with idealized kernels[C]// Proceedings of the 20th annual international conference on machine learning.Washington,DC:AAAI Press,2003.
  • 7[7]Shalev-Shwartz S,Singer Y,Ng A Y.Online and batch learning of pseudo-metrics[C]// Proceedings of the 21th annual international conference on machine learning.New York,NY,USA:ACM Press,2004.
  • 8[8]Globerson A,Roweis S.Metric learning by collapsing classes[M]// Advances in neural information processing systems 18.Cambridge,MA:MIT Press,2006.
  • 9[9]Weinberger K,Blitzer J,Saul L.Distance metric learning for large margin nearest neighbor classification[M]// Advances in neural information processing systems 18.Cambridge,MA:MIT Press,2006.
  • 10[10]Zhu M,Martinez A M.Subclass discriminant analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(8):1274-1286.

共引文献129

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部