期刊文献+

基于条件型游走二部图协同过滤算法 被引量:1

Collaborative filtering algorithm based on conditional walk bipartite graph
下载PDF
导出
摘要 针对拥有少量评分的新用户采用传统方法很难找到目标用户的最近邻居集的问题,提出了一种条件型游走二部图协同过滤算法。首先根据复杂网络理论的二部图网络,将用户—项目评分矩阵转换为用户—项目二部图,采用条件型游走计算目标用户与其他用户之间的相似性;然后根据协同过滤算法预测未评分项目,产生推荐。研究结果表明,在同样的数据稀疏性情况下,基于条件型游走二部图协同过滤算法在MAE和准确率都要优于其他两种传统的协同过滤算法,从而提高了算法的推荐精度;而且当训练值的比例很低时,即数据稀疏程度越大时,算法推荐质量的提高程度越大。 For new users with a small number of rating,it is difficult to find the approximate neighbor set of the target user by the traditional method. This paper proposed a collaborative filtering algorithm based on conditional walk bipartite graph. Firstly,it transformed the user-project scoring matrix into user-project bipartite graphs according to the bipartite graph network of complex network theory. It used the conditional walk to compute the similarity between the target user and other users,and then scored unrated items according to the collaborative filtering algorithm and generated recommendations. The results show that under the same data sparsity condition,the co-filtering algorithm based on conditional bipartite map is superior to the other two traditional algorithms in MAE and accuracy,and the algorithm's recommendation accuracy is improved. The higher the degree of data sparsity,the higher the recommendation quality of the recommendation algorithm based on conditional biped graph.
出处 《计算机应用研究》 CSCD 北大核心 2017年第12期3685-3688,共4页 Application Research of Computers
关键词 电子商务 协同过滤 条件型游走 二部图 稀疏性 e-commerce collaborative filtering conditional walk bipartite graph sparsity
  • 相关文献

参考文献3

二级参考文献43

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 3张建华,江贺,张宪超.蚁群聚类算法综述[J].计算机工程与应用,2006,42(16):171-174. 被引量:41
  • 4杨燕,张昭涛.基于阈值和蚁群算法结合的聚类方法[J].西南交通大学学报,2006,41(6):719-722. 被引量:11
  • 5WANG F H,JIAN S Y.An effective content-based recommendation method for Web browsing based on keyword context matching[J].Journal of Informatics and Electronics,2006,1 (2):49-59.
  • 6WARTENA C,SLAKHORST W,WIBBELS M,et al.Selecting keywords for content based recommendation[C] // CIKM'10:Proceedings of the 19th ACM International Conference on Information and Knowledge Management.New York:ACM Press,2010:1533-1536.
  • 7HERLOCKER J L,KONSTAN J A,TERVEEN L G,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53.
  • 8CHEN Y L,CHENG L C.A novel collaborative filtering approach for recommending ranked items[J].Expert Systems with Applications,2008,34(4):2396-2405.
  • 9LI J,XU Y,WANG Y F,et al.Strongest association rules mining for efficient applications[C] //Proceedings of the Fourth IEEE Conference on Service Systems and Service Management.Piscataway,NJ:IEEE Press,2007:502-507.
  • 10WAND J C,CHIU C C.Recommending trusted online auction sellers using social network analysis[J].Expert Systems with Applications,2008,34(3):1666-1679.

共引文献46

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部