期刊文献+

数据中心中路由编码的可行性研究 被引量:2

Feasibility Study of Routing Codes in Datacenters
下载PDF
导出
摘要 修复带宽最优并不代表修复通信量也是最优的,后者与物理网络拓扑有着密切联系.本文基于路由编码的思想减少修复通信量.首先,基于信息流图对物理网络中数据的传递过程进行建模,证明得出了满足路由编码可行的充要条件,并发现路由编码可以基于再生码实现.然后,针对数据中心网络设计的特点,为Fat-tree设计了一个工作在应用层的协议来生成修复树,为CamCube设计了一个启发式算法来生成修复树.关于最小存储再生码的数据修复过程的仿真实验表明,路由编码可以有效地降低修复通信量,2种修复树生成方案在各自适合的网络中均有较好性能:在帮助节点数较小时,Fat-tree和CamCube中的修复通信量分别降低了大约50%和30%. Repair traffic is not always optimal when repair bandwidth is optimal.The former is relative to physical network topology.This paper aimed at reducing repair traffic based on routing codes.First,we modeled data transmission in physical networks based on information flowgraph so that we could get the necessary and sufficient condition to feasibility of routing codes.And we found that routing codes could be realized based on regenerating codes.Then,we designed a protocol working on application layers to generate repair trees in Fat-tree,and a heuristic algorithm to generate repair trees in CamCube,which were both in agreement with their own design features of datacenter networks.Simulations about data-repair processes in systems using minimum-storage regenerating codes showthat routing codes can reduce repair traffic efficiently,and performance of the two generation schemes of repair trees are both good in their own adapted networks.In fact,repair traffic had about 50% and 30% reductions in Fat-tree and CamCube respectively when the number of providers was small.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第11期2742-2753,共12页 Acta Electronica Sinica
关键词 数据中心 物理网络 修复带宽 修复通信量 再生码 datacenter physical networks repair bandwidth repair traffic regenerating codes
  • 相关文献

参考文献3

二级参考文献80

  • 1Layman P, Varian H R. How much information 2003? [EB/OL]. [2010 10-18]. http://www2, sims. berkeley. edu/research/proiects/how-mueh-info-2003.
  • 2Pinheiro E, Weber W D, Barroso L A. Failure trends in a large disk drive population [C] //Proc of the 5th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2007 : 17-28.
  • 3Schroeder B, Gibson G A. Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you? [C] //Proc of the 5th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2007: 1-16.
  • 4Bairavasundaram L N, Goodson G R, Pasupathy S, et al. An analysis of latent sector errors in disk drives [C]//Proc of 2007 ACM SIGMETRICS Int Conf on Measurement and Modeling of Computer Systems. New York: ACM, 200: 289-300.
  • 5Hafner J M, Deenadhayalan V, Rao K, et al. Matrix methods for lost data reconstruction in erasure codes [C] // Proc of the 4th USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2005: 183-196.
  • 6Hafner J M, Deenadhayalan V, Kanungo T, et al. Performance metrics for erasure codes in storage systems, RJ 10321 [R]. San Jose, [A] IBM Research, 2004.
  • 7Li M, Shu J, Zheng W. GRID Codes: Strip based erasure codes with high fault tolerance for storage systems [J].ACM Transon Storage, 2009, 4(4): 1-22.
  • 8Blaum M, Brady J, Bruek J, et al. EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures [J].IEEE Trans on Computer, 1995, 44 (2) 192-202.
  • 9Corbett P, English B, Goel A, et al. Row-diagonal redundant for double disk failure correction [C] //Proc of the 3rd USENIX Conf on File and Storage Technologies. Berkeley, CA: USENIX Association, 2004:2-15.
  • 10Xu L, Bruck J. X-code: MDS array codes with optimal encoding[J]. IEEE Trans on Information Theory, 1999, 45 (1) : 272-276.

共引文献101

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部