摘要
由于1-maximin模型的目标函数在每条边上是分段线性的凹函数,基于1-maximin模型的这一特点,将粒子群算法和黄金分割法有机结合起来,提出了一种求解1-maximin模型的混合粒子群-黄金分割(PSO-GS)算法。数值实验表明,PSO-GS算法求解1-maximin模型和1-maxisum模型较Un Center和Newalgorithm算法效率高。
The objective function of the 1-maximin model is piecewise linear and concave. Based on the characteristics of the 1-maximin model,this paper proposes a hybrid particle swarm optimization-golden section(PSO-GS)algorithm to solve the 1-maximin model effectively. Numerical experiments show that the PSO-GS algorithm solves the 1-maximin model and the 1-maxisum model more efficiently than either the Un Center or Newalgorithm algorithms.
出处
《北京化工大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第6期101-105,共5页
Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金
国家自然科学基金(71571010/71372195)
北京化工大学学科建设项目(XK1522)