摘要
AlGaN/GaN heterostructure field-effect transistors (HFETs) with different floating gate lengths and floating gates annealed at different temperatures, are fabricated. Using the measured capacitance-voltage curves of the gate Shottky contacts for the AlGaN/GaN HFETs, we find that after floating gate experiences 600℃ rapid thermal annealing, the larger the floating gate length, the larger the two-dimensional electron gas electron density under the gate region is. Based on the measured capacitance-voltage and current-voltage curves, the strain of the AlGaN barrier layer in the gate region is calculated, which proves that the increased electron density originates from the increased strain of the AlGaN barrier layer.
AlGaN/GaN heterostructure field-effect transistors (HFETs) with different floating gate lengths and floating gates annealed at different temperatures, are fabricated. Using the measured capacitance-voltage curves of the gate Shottky contacts for the AlGaN/GaN HFETs, we find that after floating gate experiences 600℃ rapid thermal annealing, the larger the floating gate length, the larger the two-dimensional electron gas electron density under the gate region is. Based on the measured capacitance-voltage and current-voltage curves, the strain of the AlGaN barrier layer in the gate region is calculated, which proves that the increased electron density originates from the increased strain of the AlGaN barrier layer.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.11174182,11574182,and 61674130)