期刊文献+

Unboundedness properties of smoothness Morrey spaces of regular distributions on domains

Unboundedness properties of smoothness Morrey spaces of regular distributions on domains
原文传递
导出
摘要 We study unboundedness of smoothness Morrey spaces on bounded domains ? ? R^n in terms of growth envelopes. It turns out that in this situation the growth envelope function is finite—in contrast to the results obtained by Haroske et al.(2016) for corresponding spaces defined on R^n. A similar effect was already observed by Haroske et al.(2017), where classical Morrey spaces M_(u,p)(?) were investigated. We deal with all cases where the concept is reasonable and also include the tricky limiting cases. Our results can be reformulated in terms of optimal embeddings into the scale of Lorentz spaces L_(p,q)(?). We study unboundedness of smoothness Morrey spaces on bounded domains ? ? R^n in terms of growth envelopes. It turns out that in this situation the growth envelope function is finite—in contrast to the results obtained by Haroske et al.(2016) for corresponding spaces defined on R^n. A similar effect was already observed by Haroske et al.(2017), where classical Morrey spaces M_(u,p)(?) were investigated. We deal with all cases where the concept is reasonable and also include the tricky limiting cases. Our results can be reformulated in terms of optimal embeddings into the scale of Lorentz spaces L_(p,q)(?).
出处 《Science China Mathematics》 SCIE CSCD 2017年第12期2349-2376,共28页 中国科学:数学(英文版)
基金 supported by the project "Smoothness Morrey spaces with variable exponents" approved under the agreement "Projektbezogener Personenaustausch mit Portugal-Acoes Integradas Luso-Alems’/DAAD-CRUP" the Centre for Mathematics of the University of Coimbra (Grant No. UID/MAT/00324/2013) funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020 National Science Center of Poland (Grant No. 2014/15/B/ST1/00164)
关键词 Morrey spaces Besov spaces Triebel-Lizorkin spaces growth envelopes atomic decompositions INEQUALITIES Morrey spaces Besov spaces Triebel-Lizorkin spaces growth envelopes atomic decompositions inequalities
  • 相关文献

参考文献4

二级参考文献71

  • 1Amann, H.: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech., 2, 16-98 (2000).
  • 2D'Ancona, P., Pierfelice, V.: On the wave equation with a large rough potential. J. Funct. Anal., 227(1), 30-77 (2005).
  • 3Mazzucato, A.: Decomposition of Besov-Morrey spaces. Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), 279-294, Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003.
  • 4Sawano, Y., Tanaka, H.: Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces. Math. Z., 257(4), 871-905 (2007).
  • 5Tang, L., Xu, J.: Some properties of Morrey type Besov-Triebel spaces. Math. Nachr, 278(7-8), 904-917 (2005).
  • 6Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier-Stokes equations with distributions in new function spaces as initial data. Comm. Partial Differential Equations, 19(5-6), 959-1014 (1994).
  • 7Mazzucato, A.: Besov-Morrey spaces: Function space theory and applications to non-linear PDE. Trans. Amer. Math. Soc., 355(4), 1297-1364 (2003).
  • 8Sawano, Y.: Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces on domains in Rn, to appear in Math. Nachr.
  • 9Sawano, Y.: Wavelet characterization of Besov Triebel-Lizorkin-Morrey spaces. Funct. Approx., 38, 7-21 (2008).
  • 10Najafov, A. M.: Some properties of functions from the intersection of Besov-Morrey type spaces with dominant mixed derivatives. Proc. A. Razmadze Math. Inst., 139, 71-82 (2005).

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部