期刊文献+

微流控芯片中电渗流的数值模拟与仿真研究 被引量:6

Numerical simulation research on electroosmotic flow in microfluidic chip
下载PDF
导出
摘要 从电渗流形成的基本理论入手,推导了电场和流场双物理场耦合的控制方程。运用多物理场数值计算分析软件建立了长为1000μm,宽为100μm的二维流道,在微流道中间250~750μm的区域施加了直流电压,并在数值模拟中还原了微流道内壁和微流体的物理属性,计算得出了各段流体的速度场,进而得出了各段流体的流型。通过二维流道压力分布分析了微流道中各段产生不同流型的原因。对微流控芯片中的电动流动的功能原理分析及优化设计具有借鉴意义。 Start with basic theoretical research of electroosmotic flow,with the combination of electrical field and hydrodynamics field,a numerical simulation method of the electroosmotic flow and pressure driven flow inside a 2D model of the microchannel is carefully studied. In our model for simulation,the microchannel is 1000 μm in length and 100 μm in width,a DC power is supplied between the areas from 250 μm to 750 μm to initiate the electroosmotic flow,the physical and chemical properties of the fluid inside the channel and the channel walls are also carefully chosen during the numerical simulation. The flow pattern and velocity field the fluids inside the microchannel is obtained during the numerical simulation. With the careful study of the pressure distribution inside the microchannel,the different flow patterns at the different areas inmicrochannel were explained. This study reveals some new interesting findings for the electroosmotic flow inside the microfluidic devices,and has some potential impact for the design and optimization of the electroosmotic driven microfluidic devices.
出处 《传感器与微系统》 CSCD 2017年第11期53-55,59,共4页 Transducer and Microsystem Technologies
关键词 电渗流 数值模拟 流型 压力流 electroosmotic flow numerical simulation flow pattern pressure driven flow
  • 相关文献

参考文献4

二级参考文献35

  • 1Ronald F P 戴干策等译.物理化学流体动力学导论[M].上海:华东化工学院出版社,1992.42—46.
  • 2邓延倬 何金兰.高效毛细管电泳[M].北京:科学出版社,1992..
  • 3Woias E Micropumps-past, progress and future prospects [J]. Sensors and Actuators B (S0925-4005), 2005, 105(1): 28-38.
  • 4Patankar N A, Hu H H. Numerical simulation of electroosmotic flow [J]. Analytical Chemistry (S0003-2700), 1998, 70(9): 1870-1881.
  • 5Arulanandam S, Li D. Liquid transport in rectangular microchanncls by clectroosmotic pumping [J]. Colloids and Surfaces A (S0927- 7757), 2000, 161(1): 89-102.
  • 6Ermakov S V, Jacobson S C, Ramsey J M. Computer simulations of electrokinetic transport in microfabricated channel structure [J]. Analytical Chemistry (S0003-2700), 1998, 70(21): 4494-4505.
  • 7Erickson D, Li D. Influence of surface heterogeneity on electrokineticaUy driven microfluidic mixing [J]. Langmuir (S0743-7463), 2002, 18(5): 1883-1892.
  • 8Sinton D, Li D. Electroosmotic velocity profiles in microchannels [J]. Colloids and Surfaces A (S0927-7757), 2003, 222(1-3): 273-283.
  • 9Tian F, Li B, Kwok D Y. Simulation of eleclroosmotic flows in micro- and ranocharmels using a lattice Boltzmann model [J]. Journal of Computational and Theoretical Nanoscience (S 1546-1955), 2004, 1(4): 417-423.
  • 10Glatzel T, Litterst C, Cupelli C, et al. Computational fluid dynamics (CFD) software tools for micro fluidic applications-a case study [J]. Computers & Fluids (S0045-7930), 2008, 37(3): 218-235.

共引文献19

同被引文献28

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部