期刊文献+

氧化程度对3D rGOs形貌结构及吸附性能的影响

Effect of Oxidation Degree on 3D rGOs's Morphology, Structure and Adsorption Performance
下载PDF
导出
摘要 通过改变氧化剂用量制备不同氧化程度的氧化石墨(GO),经超声分散,水热还原制备出系列三维还原氧化石墨烯(3D r GOs),采用扫描电镜、X射线衍射、红外光谱、拉曼光谱和紫外可见分光光度计等分析测试手段研究了氧化程度对3D rGOs形貌结构、光谱特征和吸附性能的影响。结果表明:随着氧化程度的增加,水热还原产物在微观上由多层堆积的片状结构逐渐转向均匀多孔网状结构,最后转变为断裂碎片交联的网状结构。吸附容量随氧化程度的增加先增大后减小,当GO羟基含量最多而环氧基含量最少时,3D rGOs吸附性能最好,对罗丹明B、亚甲基蓝和甲基紫吸附量最高分别可达90.9、145.4和237.4 mg/g。 Series of three-dimensional reduction of graphene oxide was performed by the hydrothermal method. The precursor named graphite oxide with different oxidation degree was prepared by changing the dosage of oxidant, then ultrasonic dispersion. The effect of oxidation degree on the materials' morphology, structure, spectral characteristic and adsorption performance was investigated by scanning electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy and UV-Vis spectrophotometer. The results show that the 3 D rGOs prepared by water thermal, with increasing of oxidation degree, its micro appearance gradually transformed from structure consists of sheets of multilayer accumulation to porous and reticulated structure, and turned to network structure crosslinked with fracted fragments ultimately. Series of adsorption capacity of 3 D rGOs increases then decreases with the increase of the oxidation degree. 3 D graphene adsorption performance was the best when graphite oxide who had the most hydroxyl and the least epoxy group, the maximum adsorption capacity to rhodamine B, methylene blue and methyl violet were 90.9, 145.4, and 237.4 mg/g respectively.
出处 《非金属矿》 CSCD 北大核心 2017年第6期5-8,共4页 Non-Metallic Mines
基金 国家自然科学基金(4177203 U1630132) 四川省科技厅项目(2017GZ0114) 西南科技大学研究生创新基金(16ycx044)
关键词 氧化程度 氧化石墨 三维还原氧化石墨烯 吸附性能 different oxidation degree graphite oxide three-dimensional reduction of graphene oxide adsorption performance
  • 相关文献

参考文献4

二级参考文献58

  • 1杨序纲,吴琪琳.拉曼光谱的分析与应用.北京:国防工业出版社,2008.210-243.
  • 2Chen Z., Ren W. L., Gao B., Liu S., Cheng H. M., Nat. Mater., 2011, 10, 424-428.
  • 3Li W., Gao S., Wu L., Qiu S., Guo Y., Geng X., Chen M., Liao S., Zhu C., Gong Y., Long M., Xu J., Wei X., Sun M., Liu L., Sci. Rep., 2013, 3, 2125-2132.
  • 4Mao S., Wen Z., Kim H., Lu G., Hurley P., Chen J., ACS Nano, 2012, 6, 7505-7513.
  • 5Ahn H. S., Kim J. M., Park C., Jang J. W., Lee J. S., Kim H., Kaviany M., Kim M. H., Sci. Rep., 2013, 3, 1960-1966.
  • 6Mao S., Yu K. H., Chang J. B., Steeber D. A., Ocola L. E., Chen J. H., Sci. Rep., 2013, 3, 1696-1701.
  • 7Meng Y. N., Zhao Y., Hu C. G., Cheng H. H., Hu Y., Zhang Z. P., Shi G. Q., Qu L. T., Adv. Mater., 2013, 25, 2326-2331.
  • 8Lee J. S., Kim S. I., Yoon J. C., Jang J. H., ACS Nano, 2013, 7, 6047-6055.
  • 9Li H., Liu L., Yang F., J. Mater. Chem. A, 2013, 1, 3446-3455.
  • 10Zhao Z., Wang X., Qiu J., Lin J., Xu D., Zhang C. A., Yang X., Rev. Adv. Mater. Sci., 2014, 36, 137-151.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部