摘要
获得了非线性函数带有导数项的二阶周期边值问题{u″(t)+au(t)=f(t,u(t),u'(t)),t∈[0,1],u(0)=u(1),u'(0)=u'(1)正解的存在性,其中π~2/4<a≤π~2,f:[0,1]×R^+×R→R^+连续。f(t,x,y)满足Nagumo条件,且关于x和y满足一定的超线性增长条件。针对超线性情形,Nagumo条件关于y严格控制了f的增长。主要结果的证明基于不动点指数理论。
This paper shows the existence of positive solutions of the fully second-order periodic boundary value problem {u″(t)+au(t)=f(t,u(t),u'(t)),t∈[0,1],u(0)=u(1),u'(0)=u'(1) , whereπ^2/4〈a≤π^2,f:[0,1]×R^+×R→R^+ is continuous, f( t, x,y) is superlinear growth on x and y and a Nagumo- type condition is presented. Under the conditions that the superlinear case, the Nagumo-type condition is restrict the growth off on y. Our discussion is based on the fixed point index theory in cones.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2017年第9期69-75,共7页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11671322)
数学天元基金资助项目(11626061)
关键词
正解
二阶周期边值问题
不动点指数理论
positive solution
second-order boundary value problem
fixed point index theory