期刊文献+

向量半线性二阶脉冲泛函微分包含的C^1-可解性

C^1-Solvability Criteria for Vector Semilinear Second-Order Impulsive Functional Differential Inclusions
原文传递
导出
摘要 本文在可分Banarch空间上研究了一类具局部条件与多值脉冲特征的二阶半线性中立型泛函微分包含,利用算子分裂方法、算子的余弦族理论及关于多值映射的Dhage不动点定理,分别给出当微分包含的多值非线性项是全连续映射与Lipschitz连续映射时C1-解的两个存在性定理,去掉了以往相关结果中关于余弦族的多余的紧性限制· A semilinear second-order neutral functional differential inclusion with nontocal conditions and multivalued impulse characteristics in a separable Banach space is considered. Two existence theorems for Cl-solutions are given, when the multivalued nonlinearity of the inclusion is a Lipschitz continuous map and a completely continuous map, respectively. The results are obtained by using operator splitting method, the theory of continuous cosine families of bounded linear operators and the fixed point theorem for multivalued maps due to Dhage. The crucial compactness restriction on the cosine family is removed from previous results.
作者 肖建中 王智勇 居加敏 XIAO JIANZHONG;WANG ZHIYONG;JU JIAMIN(School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China)
出处 《应用数学学报》 CSCD 北大核心 2017年第6期820-840,共21页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11571176 111701289)资助项目
关键词 脉冲泛函包含 算子的余弦族 多值映射的不动点 非紧性测度 impulsive functional inclusion cosine family of operators fixed point for multivalued map measure of noncompactness
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部