摘要
该文研究如下抽象非线性微分方程_0~CD_t~αu(t)=A(t,u)u(t)+f(t,u(t),Bu(t)),0<α<1,0<t<T的局部和非局部Cauchy问题·运用不动点理论,分别给出了方程经典解和适度解存在的条件,并证明了解对初值的连续依赖性.
In this paper, we study the local and nonlocal Cauchy problem for the following abstract nonlinear fractional differential equation C0Ct^αu(t)=A(t,u)u(t)+f(t,u(t),Bu(t)),0〈α〈1,0〈t〈T By fixed point theory, the conditions for the existence of the classical solution and the mild solution of the equation are presented respectively. In addition, continuous dependence on initial values of the solution are proved.
作者
张文彪
易鸣
ZHANG WENBIAO;YI MING(Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;Department of Physics, College of Science, Huazhong Agricultural University, Wuhan 430070, China)
出处
《应用数学学报》
CSCD
北大核心
2017年第6期874-882,共9页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11675060)
华中农业大学科技自主创新基金(2015RC021)资助项目
关键词
分数阶发展方程
CAUCHY问题
经典解
适度解
fractional evolution equation
Cauchy problem
classical solution
mild solution