期刊文献+

基于改进CV的图像分割 被引量:9

Image segmentation based on an improved CV model
下载PDF
导出
摘要 为了提高传统CV分割算法对含纹理的图像分割效果,该文分析了图像纹理分量的统计特性,在图像TV平滑的基础上,设计了新的保边平滑函数,建立了保边平滑模型;运用传统CV分割算法对平滑分量进行分割;根据不同平滑分量分割区域不同,设计了基于区域置信度的分割平滑收敛函数,解决了分割曲线消失问题.实验表明,相对于传统CV分割算法,该算法对自然图像分割的效果较好,对非一致区域不敏感. In order to improve CV model's performance on image with texture, this paper analyzes the statistical properties of image texture components, and proposes an improved segmentation algorithm. Specifically, this study has designed a new edge-preserving function based on the TV image smoothing. Also, the algorithm applies the CV model to segment the smooth component of an image. On the other hand, considering the fact that different smooth components have different segmentation areas, a new "Smooth convergence function" based on the region confidence is designed to overcome the disappearing of segmentation curve. Experimental results demonstrate that the proposed algorithm outperforms the traditional CV model in term of segmentation effects on natural images, but is insensitive to the inconsistent area.
作者 夏欣 葛龙 孟宏源 XIA Xin;GE Long;MENG Hong-Yuan(College of Computer Science, Sichuan University, Chengdu 610065, China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第6期1185-1189,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(61471250)
关键词 图像分割 保边平滑 水平集 区域置信度 Image segmentation Edge-preserving Level set Region confidence level
  • 相关文献

参考文献6

二级参考文献69

  • 1王植,贺赛先.一种基于Canny理论的自适应边缘检测方法[J].中国图象图形学报(A辑),2004,9(8):957-962. 被引量:214
  • 2王娜,李霞.一种新的改进Canny边缘检测算法[J].深圳大学学报(理工版),2005,22(2):149-153. 被引量:77
  • 3吴炜,薛磊,杨晓敏,陈默,何小海.基于改进差分边缘检测法的车牌字符二值化算法[J].四川大学学报(自然科学版),2006,43(6):1253-1258. 被引量:6
  • 4李俊.基于曲线演化的图像分割方法及应用:博士学位认文[M].上海:上海交通大学,2001..
  • 5Bresson X, Esedoglu S, Vandergheynst P, et al. Fast global minimization of the active contour/snake model [J]. Journal of Mathematical Imaging and Vision, 2007, 28(2): 151-167.
  • 6Sofou A, Maragos P. Generalized flooding and multicue PDE-based image segmentation [J]. IEEE Transactions on Image Processing, 2008, 17(3): 364-376.
  • 7Bobin J, Starck J L, Fadili J, et al. Sparsity and morphological diversity in blind source separation [J]. IEEE Transactions on Image Processing, 2007, 16(11): 2662-2674.
  • 8Bobin J, Starck J L, Moudden Y, et al. Blind source separation:the sparsity revolution [M] //Hawkes P W.Advances in Imaging and Electron Physics. Blessed Virgin: Elsevier, 2008, 152: 221-302.
  • 9Li F, Shen C M, Li C M. Multiphase soft segmentation with total variation and HI regularization[J]. Journal of Mathematical Imaging and Vision, 2010, 37(2): 98-111.
  • 10Fadili M J, Starck J L, Bobin J, et al. Image decomposition and separation using sparse representations : an overview [J]. Proceedings of the IEEE, 2010, 98(6): 983-994.

共引文献187

同被引文献47

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部