期刊文献+

高压下LaB_6的弹性和热力学性质的第一性原理计算(英文) 被引量:5

Elastic and thermodynamic properties of LaB_6 under pressure:a first-principles study
下载PDF
导出
摘要 运用平面波赝势密度泛函理论,研究了CsCl结构的LaB_6在高压下的弹性和热力学性质.计算中使用了广义梯度近似,得到在零温零压下LaB_6的晶格常数和已知的实验及其它理论结果相符.同时,我们还得到了LaB_6的弹性常数Cij,体弹模量B,剪切模量G,杨氏模量E,德拜温度ΘE,泊松系数σ,压缩波速VL和剪切波速VS与压强的关系.计算发现LaB_6在压强低于14GPa时具有力学稳定性.根据准谐德拜模型,我们还预测了CsCl结构LaB_6的热力学性质,对0~14GPa和0~1500K范围内热膨胀系数和比热容的变化进行了研究.最后分析了LaB_6在零温零压和高压下的电子态密度图. The elastic and thermodynamic properties of CsCl-type structure LaB6 under high pressure are investigated by first-principles calculations based on plane-wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The calculated lattice parameters of LaB6 under zero pressure and zero temperature are in good agreement with the existing experimental data and other theoretical data. The pressure dependences of the elastic constants, bulk modulus B (GPa), shear modulus G, Young's modulus E, elastic Debye temperature OK, Poisson ratio a, compressional wave velocity Vcand shear wave velocity Vs are also presented. An analysis for the calculated elastic constants has been made to reveal the mechanical stability of LaB6 up to 14 GPa. The thermodynamic properties of the CsCl-type structure LaB6 are predicted using the quasi-harmonic Debye model. The variations of thermal expansion coefficient a and the specific heat capacity Cv are obtained systematically in the ranges of 0-14 GPa and 0-1500 K. At last, the pressure dependences of the density of states are also investigated.
作者 何熹 傅敏 于白茹 HE Xi;FU Min;YU Bai-Ru(College of Physical Science and Technology, Sichuan University, Chengdu 610064, China;Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第6期1239-1249,共11页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11204192)
关键词 密度泛函理论 弹性性质 电子性质 热力学性质 Density functional theory Elastic properties Electronic properties Thermodynamic properties
  • 相关文献

参考文献4

二级参考文献107

  • 1Tromp H J, van Gelderen P, Kelly P J, Brocks G and Bobbert P A 2001 Phys. Rev. Lett. 87 016401.
  • 2Xu T T, Zheng J G, Nicholls A W, Stankovich S, Piner R D and Ruoff R S 2004 Nano. Lett. 4 2051.
  • 3Young D P, Hall D, Torelli M E, Fisk Z, Sarrao J L, Thompson J D, Ott H R, Oseroff S B, Goodrich R G and Zysler R 1999 Nature 397 412.
  • 4Komatsubara T, Sato N, Kunii S, Oguro I, Furukawa Y, Onuki Y and Kasuya T 1983 J. Magn. Magn. Mater. 31- 34 368.
  • 5Shang S L, Wang Y and Liu Z K 2007 Phys. Rev. B 75 024302.
  • 6Peysson Y, Daudin B, Dubus M and Benenson R E 1986 Phys. Rev. B 34 8367.
  • 7Lemmens P, Ewert S, Thalmeier P, Lenz D and Winzer K 1989 Zeit. Phys. B 76 501.
  • 8Barzykin V and Cor'kov L P 2000 Phys. Rev. Left. 84 2207.
  • 9Monnier R and Delley B 2004 Phys. Rev. B 70 193403.
  • 10Hossain F M, Riley D P and Murch G E 2005 Phys. Rev. B 72 235101.

共引文献6

同被引文献25

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部