期刊文献+

调和稳定Lévy过程驱动的双重跳跃模型及期权应用 被引量:5

Option Pricing of A Double Jump Model Driven by Tempered Stable Lévy Processes and Its Application
下载PDF
导出
摘要 为准确刻画证券价格波动过程中的跳跃特征,捕获收益率尖峰厚尾、有偏等非高斯特征以及波动率集聚、异方差性等效应,建立了证券价格与相应波动率均存在跳跃的随机波动率模型,其中跳跃分布为两类纯跳跃Lévy分布(调和稳定分布和速降调和稳定分布)。最终,构建得到调和稳定Lévy过程驱动的双重跳跃随机波动模型。利用恒生和标普500股指数据进行实证,结果表明:与仿射跳扩散相比,纯跳跃Lévy分布能捕获随机信息的尖峰厚尾特征,拟合能力更优越,股指收益尾部分布存在速降特征。在此基础上的期权定价结果表明,速降调和稳定过程驱动的双重跳跃随机波动模型更有效。 In order to characterize the jump feature of securities price and the associated volatility process, which involves the leptokurtosis, heavy tailed and skewed non-Gaussian phenomena in stock returns, as well to simultaneously address the volatility clustering and heteroskedasticity effect, this paper introduces two pure jump Levy processes (classical tempered stable and rapidly decreasing tempered stable processes) into the double jump stochastic volatility model in which both the returns and volatility processes jumps. Thus we establish double jump stochastic volatility models driven by tempered stable L;vy processes. The empirical studies of hang Seng and SP 500 index show that, compared with affine jump diffusion processes, pure jump Levy distribution models can capture the above-mentioned characteristics more accurately and the tail distribution of stock index returns express rapidly decreasing phenomenon. Option pricing results demonstrate that the double jump stochastic volatility model driven by rapidly decreasing tempered stable process is more effective.
出处 《系统管理学报》 CSSCI CSCD 北大核心 2017年第6期1089-1096,共8页 Journal of Systems & Management
基金 国家自然科学基金资助项目(71671030)
关键词 纯跳跃Lévy过程 双重跳跃随机波动 速降调和稳定 期权定价 pure jump Levy processes double jump stochastic volatility rapidly decreasing tempered stable option pricing
  • 相关文献

参考文献3

二级参考文献59

  • 1胡素华,张世英,张彤.双指数跳跃扩散模型的McMC估计[J].系统工程学报,2006,21(2):113-118. 被引量:25
  • 2童汉飞,刘宏伟.中国股市收益率与波动率跳跃性特征的实证分析[J].南方经济,2006,35(5):61-72. 被引量:15
  • 3陈学胜.含跳跃过程单因子利率模型的估计——基于中国国债回购利率的实证分析[J].南方经济,2006,35(10):96-103. 被引量:8
  • 4Glosten L R, Milgrom P R. Bid, ask, and transaction prices in a specialist market with heterogeneously informed traders[J]. Journal of Financial Economics, 1985, 14(1): 71 100.
  • 5Press S J. A compound events model for security prices[J]. Journal of Business, 1967, 40(3): 317-335.
  • 6Jorion P. On jump processes in the foreign exchange and stock markets[J]. Review of Financial Studies, 1988, 1(4): 427-445.
  • 7Bates D S. Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options[J]. Review of Financial Studies, 1996, 9(1): 69-107.
  • 8Pan J. The jump-risk premia implicit in options: Evidence from an integrated time-series study[J]. Journal of FinanciM Economics, 2002, 63(1): 3-50.
  • 9Kou S G. A jump-diffusion model for option pricing[J]. Management Science, 2002, 48(8): 1086 1101.
  • 10Fortune P. Are stock returns different over weekends? A jump diffusion analysis of the weekend effect[J]. New England Economic Review, 1999, 10: 3-19.

共引文献23

同被引文献41

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部