期刊文献+

超分辨显微技术在活细胞中的应用与发展 被引量:15

Super-resolution microscopy applications and development in living cell
下载PDF
导出
摘要 细胞是生命体的基本单位和功能单位,对活细胞内部结构及其功能的研究是了解掌握生命本质的基础之一,因此活细胞的实时观测对生命科学的发展具有重要意义。传统的光学显微技术受衍射极限的限制,无法观测200 nm以下的生物结构细节。近20年来,随着超衍射极限光学理论、技术、器件和荧光探针等方面的快速发展,超分辨显微成像技术已成为应用于生命科学研究的重要手段。然而,大多数超分辨显微方法或测量耗时长,或易引起荧光蛋白漂白/细胞损伤,在活细胞研究中受到极大限制,已成为超分辨显微领域重点攻关的方向之一。为此,文中结合作者在快速超分辨显微技术研究的基础上,介绍了基于单分子成像的光激活定位显微技术和随机光学重构显微技术、基于荧光非线性可饱和光转换的受激发射显微技术以及基于结构光照明的超分辨显微技术,并探讨了在活细胞成像中的发展应用。最后,文中展望了超分辨显微成像技术在活细胞成像中的未来发展趋势。 Cell is the basic unit and functional unit of living body. The study of the internal structure and function of living cells is one of the foundations of mastering the essence of life. Therefore, the real-time observation of living cells is of great significance for the development of life sciences. Conventional optical microscopy is limited by the diffraction limits and can not observe the details of biological structures below 200 nm. In the past 20 years, with the rapid development of super-diffraction limit optical theory, technology, devices and fluorescent probes, super-resolution microscopy has become an important method for life science research. However, most super-resolution microscopic methods or measurements take a long time, or are likely to cause photobleaching/phototoxicity, and are severely limited in living cell studies. In this paper, based on the study of fast super-resolution microscopy, the photoactivated localization microscopy and stochastic optical reconstruction microscopy were introduced based on single molecule localization microscopy. The stimulated emission depletion microscopy based on fluorescence non-linear saturated light conversion and structured illumination microscopy based onstructured light illumination was also introduced. Besides, the development and application of cell imaging were explored. Finally, an outlook of the future development trend of super-resolution microscopy in living cell imaging was provided.
出处 《红外与激光工程》 EI CSCD 北大核心 2017年第11期15-25,共11页 Infrared and Laser Engineering
基金 国家重点研发计划(2017YFF0107003) 天津市应用基础及前沿技术研究计划重点项目(15JCZDJC31600)
关键词 超分辨显微技术 单分子定位显微技术 受激发射损耗显微技术 结构光照明显微技术 super-resolution microscopy single molecule localization microscopy stimulated emissiondepletion microscopy structured illumination microscopy
  • 相关文献

参考文献2

二级参考文献19

  • 1I E. Abbe. Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Arck iv .fiir Mikroskopiscke Anatomie. 1873, 9(1)?: 413-418.
  • 2S. W. Hell. Far-field optical nanoscopy [J].Science, 2007, 316(5828): 1153-1158.
  • 3S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stinm[ated emission depletion fluorescence microscopy[J].opt lett. 19(11): 780--782.
  • 4S. Galiani, B. Harke, G. Vicidomini et al.. Strategies to maximize tile performance of a STED microscope[J].Opt. E.rpress, 2012, 21)(7) : 7362-7374.
  • 5S. W. Hell, K. I. Willig, B. Harke et al.. STED microscopy with continuous wave beams[J].Nat. Methods, 2007, 4(11):915-918.
  • 6P. Bingen, M. Reuss, J. Engelhardt et al.. Parallelized STED fluorescence nanoscopy[J].Opt. Express, 2011, 19 (24): 23716-23726.
  • 7D. Wildanger, R. Medda, L. Kastrup et al.. A compact STED microscope providing 3D nanoscale resolution[J]. J. Microsc. , 2009, 236(1): 35-43.
  • 8G. Vicidomini, G. Moneron, K. Y. Han et al.. Sharper low power STED nanoscopy by time gating[J].Nature Methods, 2011. 8(7):571-575.
  • 9E. Fiserova, M. Kubala. Mean fluorescence lifetime and its error [J]. J. Lumin. , 2012, 132(8): 2059-2064.
  • 10T. Iwata, H. Kiyoto, Y. Mizutaniet al.. Comparison of pulsed- excitation and phase-modulation methods for estimating uorescence lifetime values using a convolved-autoregressive model and a high-gain photomultiplier tube[J].. Opt. Rev. , 2010, 17(6) : 513-518.

共引文献7

同被引文献107

引证文献15

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部