期刊文献+

针对非合作目标的自适应网格聚类算法

An Adaptive Grid-based Clustering Algorithm for Noncooperative Targets
下载PDF
导出
摘要 武器系统的探测设备通常面对的是非合作目标,观测样本在特征空间中的分布形式难以预期,噪声、不规则的类簇形状以及差异化的类簇密度给聚类分析带来极大挑战。提出了一种自适应的网格聚类算法,该算法包括基于k-近邻方法的空间分辨率自适应网格化处理方法,以及基于自适应分水岭变换的类簇结构检测与划分方法。实现了对噪声以及密度差异极大类簇的自适应处理,同时保留了网格聚类方法对类簇形状不敏感、不需要类个数作为先验参数等优点。通过雷达、电子侦察以及复杂人造数据集的仿真,证明了该算法的有效性。 The detection equipment of weapon systems is usually used to detect the noncooperative targets,causing the distribution patterns of observed samples to be unpredictable in feature spaces.The irregular cluster shapes,diversified cluster densities and noise bring great challenges to clustering algorithms.A novel adaptive grid-based clustering algorithm,which consists of a k-nearest neighbor methodbased gridding method with spatial resolution adaptability,and an adaptive watershed transform-based method for cluster detection and segmentation in the gridded space are presented.The proposed algorithm could process the clusters with noises and significantly diverse densities,meanwhile keeps the advantages of gird-based clustering,including robustness for cluster shape and no need for cluster number as priori parameter.The effectiveness of the algorithm is tested with simulation and artificial datasets.
作者 栗大鹏 梁伟
出处 《兵工学报》 EI CAS CSCD 北大核心 2017年第11期2166-2175,共10页 Acta Armamentarii
基金 国防"973"计划项目(613196)
关键词 人工智能 网格聚类 可塑性面积单元问题 分水岭变换 artificial intelligence grid-based clustering modifiable areal unit problem watershed transform
  • 相关文献

参考文献3

二级参考文献12

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Ester. M. Kriegel, H.-P, Sander, J.et al. A density-based algorithm for discovering clusters in large spatial databases withnoise. In:Simoudis. E.. Han J., Fayyad, U.M., eds. Proceedings of the 2nd InternationalConference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996.226-231.
  • 3Zhou. B. Cheung, D., Kao, B. A fast algorithm for density-based clustering. In:Zhong, N.. Zhou, L., eds. Methodologies for Knowledge Discovery and Data Mining, the 3rdPacific-Asia Conference. Berlin: Springer, 1999. 338~349.
  • 4Agrawal. R.. Gehrke J., Gunopolos, D., Raghavan, P. Automatic subspace clusteringof high dimensional data for data mining application. In: Haas, L.M.. Tiwary, A., eds.Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle.Washington, USA: ACM Press, 1998.94~105.
  • 5Schikuta. E. Grid clustering: an efficient hierarchical clustering method for verylarge data sets. In: Proceedings of the 13th International Conference on PatternRecognition. IEEE Computer Society Press, 1996. 101 ~105.
  • 6Ester. M. Kriegel, H.-P. Sander, J. et. al. Incremental clustering for mining in adata warehousing environment. In: Gupta, A.,Shmueli. O., Widom. J., eds. Proceedings ofthe 24th International Conference on Very Large Data Bases. New York: Morgan KaufmannPublishers Inc.. 1998. 323-333.
  • 7Chen M S.Data mining:an overview from database perspective[].IEEE Transactions on Knowledge and Data Engineering.1996
  • 8Zhang T,Ramakrishnan R,Livny M.BIRCH: An efficient data clustering method for very large databases[].Proceedings of ACM-SIGMOD International Conference on Management of Data.1996
  • 9Ng R,Han J.Efficient and Effective Clustering Methods for Spatial Data Mining. Proc. 1994 Int. Conf. Very Large Data Bases (VLDB’ 94) . 1994
  • 10Tan Pang-ning,Steinbach M.Introduction to Data Mining. . 2010

共引文献1207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部