期刊文献+

ALNQD序列密度函数核估计的强相合性 被引量:3

Strong Consistency of Kernel Estimator of Density Function for ALNQD Sequence
下载PDF
导出
摘要 设{X_n,n≥1}为一同分布的渐近线性负相依(ALNQD)序列,f_n(x)为密度函数f(x)基于样本X_1,…,X_n的核估计.在适当的假设条件下,利用ALNQD序列的矩不等式和Borel-Cantelli引理,证明核密度估计的强相合性、一致强相合性及r阶相合性. Let {X_n,n≥1}be an asymptotically linear negative quadrant dependent(ALNQD)sequence with the same distribution,and fn(x)be the kernel estimator of the density function f(x)based on the sample X_1,…,X_n.Under some suitable assumptions,the author proved the strong consistency,the uniform strong consistency and the r-order consistency of the kernel density estimator by using the moment inequalities of ALNQD sequences and Borel-Cantelli lemma.
作者 陆冬梅
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第6期1461-1464,共4页 Journal of Jilin University:Science Edition
基金 吉林省自然科学基金(批准号:20170101061JC)
关键词 ALNQD序列 核估计 (一致)强相合性 r阶相合性 ALNQD sequence kernel estimator (uniform) strong consistency r-order consistency
  • 相关文献

参考文献4

二级参考文献30

  • 1Zhang Lixin\ Wang Xiuyun.CONVERGENCERATESIN THESTRONG LAWSOFASYMPTOTICALLY NEGATIVELY ASSOCIATEDRANDOM FIELDS[J].Applied Mathematics(A Journal of Chinese Universities),1999,14(4):406-416. 被引量:52
  • 2蔡宗武.相依随机变量的密度函数的递归核估计的渐近正态性[J].应用概率统计,1993,9(2):123-129. 被引量:5
  • 3Yun-xia Li.Change-point Estimation of a Mean Shift in Moving-average Processes Under Dependence Assumptions[J].Acta Mathematicae Applicatae Sinica,2006,22(4):615-626. 被引量:4
  • 4WANG Kaiyong, WANG Yuebao,GAO Qingwu. Uniform Asymptotics for the Finite-Time Ruin Probability of aDependent Risk Model with a Constant Interest Rate [J]. Method Comput Appl Probabil, 2013,15(1) : 109-124.
  • 5Wolverton C T,Wagner T J. Asymptotically Optimal Discriminant Functions for Pattern Classification [J]. IEEETrans Information Theory, 1969,IT15 : 258-265.
  • 6Wegman E J,Davies H I, Remarks on Some Recursive Estimators of a Probability Density [J], Ann Statist,1979’ 7(2): 316-327.
  • 7Masry E. Strong Consistency and Rates for Recursive Probability Density Estimators of Stationary Processes [J].J Multivar Anal,1987, 22(1) : 79-93.
  • 8LIU Li. Precise Large Deviations for Dependent Random Variables with Heavy Tails [J]. Stat Probabil Lett,2009, 79(9); 1290-1298.
  • 9WANG Yuebao, CHENG Dongya. Basic Renewal Theorems for Random Walks with Widely DependentIncrements [J]. J Math Anal Appl, 2011,384(2) : 597-606.
  • 10SHEN Aiting. Bernstein-Type Inequality for Widely Dependent Sequence and Its Application to Nonparametric RegressionModels [J/OL]. Abstract and Applied Analysis, 2013-07-02. http://dx.doi.org/10_1155/2013/862602.

共引文献8

同被引文献15

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部