期刊文献+

基于深度学习的维吾尔语名词短语指代消解 被引量:7

Coreference Resolution of Uyghur Noun Phrases Based on Deep Learning
下载PDF
导出
摘要 针对维吾尔语名词短语指代现象,提出了一种利用栈式自编码深度学习算法进行基于语义特征的指代消解方法.通过对维吾尔语名词短语指称性的研究,提取出利于消解任务的13项特征.为提高特征对文本语义的表达,在特征集中引入富含词汇语义及上下文位置关系的Word embedding.利用深度学习机制无监督的提取隐含的深层语义特征,训练Softmax分类器进而完成指代消解任务.该方法在维吾尔语指代消解任务中的准确率为74.5%,召回率为70.6%,F值为72.4%.实验结果证明,深度学习模型较浅层的支持向量机更合适于本文的指代消解任务,对Word embedding特征项的引入,有效地提高了指代消解模型的性能. Aimed at the reference phenomena of Uyghur noun phrases, a method using stacked autoencoder model to achieve coreference resolution based on semantic characteristics is presented. Through the study of noun phrases referentiality, we pick up beneficial 13 features for coreference resolution tasks. In order to improve the expression of features for semantic text, Word embedding is added into feature sets, which makes feature sets contain lexical semantic information and context positional relationship. A deep learning algorithm is proposed for unsupervised detection of implicit semantic information, and also introduced is a softmax classifier to decide whether the two markables actually corefer. Experiments show that precision rate, recall rate and F value of coreference resolution reach 74.5 %, 70.6 % and 72.4 %, respectively, which demonstrates that the proposed method on coreference resolution of Uyghur noun phrase and introduction of Word embedding to feature sets are able to improve the performance of coreference resolution system.
出处 《自动化学报》 EI CSCD 北大核心 2017年第11期1984-1992,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61563051 61262064 61662074 61331011) 自治区科技人才培养项目(QN2016YX0051)资助~~
关键词 深度学习 栈式自编码神经网络 指代消解 WORD EMBEDDING 维吾尔语 Deep learning, stacked autoencoder, coreference resolution, word embedding, Uyghur
  • 相关文献

参考文献6

二级参考文献51

  • 1王厚峰,梅铮.鲁棒性的汉语人称代词消解[J].软件学报,2005,16(5):700-707. 被引量:36
  • 2李国臣,罗云飞.采用优先选择策略的中文人称代词的指代消解[J].中文信息学报,2005,19(4):24-30. 被引量:33
  • 3周俊生,黄书剑,陈家骏,曲维光.一种基于图划分的无监督汉语指代消解算法[J].中文信息学报,2007,21(2):77-82. 被引量:19
  • 4Wee. Meng Soon, Hwee Tou Ng and Daniel Chung Yong lim. A machine learning approach to coreference resolution of noun phrase[J]. Computational Linguistics,2001,27(4): 521-544.
  • 5Vincent Ng and Claire Cardie. Improving machine learning approaches to coreference resolution [C]// Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,2002.
  • 6YangX. F., Su J., Zhou G.D. and Tan C. L. 2004 Improving pronoun resolution by incorporating eorefer ential information of candidates[C]//ACL'2004:127 134, Barcelona, Spain, 21-26, July,2004 .
  • 7Yang X.F. ,Zhou G.D. , Su J. and. Tan C. L. 2003. Coreference Resolution Using Competition Learning Approach[C]//ACL'2003: 176-183, Sapporo, Japan, 7-12, July, 2003.
  • 8Yang X. F. , Su J. and Tan C.L. 2006, Kernel-Based Pronoun Resolution with Structured Syntactic Knowl edge[C]//ACL' 2006..41-48, Sydney,July. 2006.
  • 9Zhou G. D. and Su J. 2004. A high-performance coreference resolution system using a multi-agent strategy[C]//COLING'2004:522-528. 23 27, Aug, 2004, Geneva, Switzerland.
  • 10Zhou GD. and Su J. 2002. Named Entity Recognition using an HNMM-based Chunk Tagger[C]//ACL' 2002: 473-480, Philadelphia, July,2002.

共引文献79

同被引文献14

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部