期刊文献+

模糊多目标规划在制定最优竞标方案中的应用 被引量:3

An Application of the Fuzzy Multi-objective Programming in Optimal Bidding Strategy Design
原文传递
导出
摘要 【目的】针对已有文献提出的一类工程项目的招投标问题,给出了一种使用模糊多目标规划技术进行建模以制定最优竞标方案的方法。【方法】将投标方在利润上的基本目标及招标方所提出的对项目目标的要求作为必须满足的约束来处理,并将最大化投标方所获利润、项目质量等级、安全性能、环境性能,最小化投标方工程成本、项目所需时间作为模型目标函数。【结果】通过对每个目标函数引入分段线性满意度函数,建立了模糊多目标规划模型,并采用加权求和法进行求解。文中给出了具体实例以详细说明建模及求解的过程。【结论】模糊多目标规划技术可以为制定最优竞标方案提供有力工具。 [Purposes]A modeling approach based on fuzzy multi-objective programming techniques is proposed to design the optimal bidding strategy for the bidding problem in view of the existing literature.[Methods]This approach treat the basic objective on profit of the bidder and the project objectives of the tenderee as hard constraints,and set the maximization of profits of the bidder,project quality standard,project safety performance,and the minimization of project cost of the bidder,the project construction time as the objectives of the modelling problem.[Findings]A fuzzy multi-objective programming problem is then formulated by applying apiecewise linear satisfaction function to each of the objective functions.The weighting method is adopted to solve the formulated problem.A concrete example is given to illustrate the modelling and solving process in detail.[Conclusions]The fuzzy multi-objective programming techniques can provide a powerful tool in the optimal bidding strategy design.
作者 白富生
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第6期1-6,共6页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11471062)
关键词 竞标 模糊多目标规划 满意度函数 最优竞标方案 bidding fuzzy multi-objective programming satisfaction function optimal bidding strategy
  • 相关文献

参考文献2

二级参考文献13

  • 1Duffin R J,Peterson E L, Zener C M. Geometric Program- ming Theory and Applications [M]. New York: Wiley, 1967.
  • 2Cao B Y. Solution and theory of question for a kind of fuzzy positive geometric program[C]//Proc 2nd IFSA Congress. Tokyo : [s. n.],1987,1: 205-208.
  • 3Cao B Y. Fuzzy geometric programming(I)[J]. Fuzzy Sets and Systems, 1993,53 : 135-153.
  • 4Cao B Y. Posynomial geometric programming with L-R fuzzy coefficients [J]. Fuzzy Sets and Systems, 1994, 67: 267-276.
  • 5Liu S T. Geometric programming with fuzzy parameters in engineering optimization[J]. International Journal of Ap- proximate Reasoning, 2007,46 (3) : 484-498.
  • 6Cao B Y. Fuzzy geometric programming[M]. [S. 1. ] : Klu- wer Acadmic Publishers,2002.
  • 7Verma P K. Fuzzy geometric programming with several ob- iective function[J]. Fuzzy Sets and Systems, 1990,35 : 115- 120.
  • 8Biswal M P. Fuzzy programming technique to solve multi objective geometric programming problems[J]. Fuzzy Sets and Systems, 1992,51 : 67-71.
  • 9Cao B Y. Typs of non-distinct Multi-objective Geometric Programming[J-]. Hunan Annals of Mathematics, 1995,1: 99-106.
  • 10Zadeh L A. Fuzzy sets as a basis for a theory of possibility [J], Fuzzy Sets and Systems, 19 7 8,1 : 3-2 8.

共引文献3

同被引文献28

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部