期刊文献+

有限理性与图像拓扑下广义博弈解的稳定性 被引量:1

Bounded Rationality and Stability of Solutions for Generalized Games under Graph Topology
原文传递
导出
摘要 【目的】集值映射的图像拓扑较一致度量产生的拓扑弱,图像拓扑下研究解的稳定性具有重要的理论意义。【方法】有限理性框架下,首先利用可行策略映射图像之间的Hausdorff距离定义度量,其次分别定义可行映射,行为映射和理性函数。【结果】得到了参数空间的完备性和有限理性框架下广义博弈解的通有稳定性。【结论】也就是说,在此弱图像拓扑下证明了大多数的广义博弈(Baire分类的意义下)都是结构稳定的,对ε-平衡也是鲁棒的。 [Purposes]The graph topology of set-valued mappings is weaker than the topology produced by uniform metric;it is of great theoretical significance to study the stability of solutions under graph topology.[Methods]A metric is defined by using the Hausdorff distance of graphs of feasible strategy mappings under the framework of bounded rationality,and concepts of feasible mapping,behavior mapping and rational function are defined respectively.[Findings]Then the completeness of parameter space and the generic stability of solutions for generalized games under bounded rationality are obtained.[Conclusions]Under this weak graph topology,it is proven that the most of generalized games(in the sense of Baire)are structurally stable and robust toε-equilibrium.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第6期15-20,共6页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11561013 61472093) 贵州省科技厅自然科学基金项目(No.黔科合LH字[2016]7425) 贵州省教育厅自然科学研究项目(No.黔教合KY字[2015]421)
关键词 有限理性 广义博弈 图像拓扑 结构稳定 鲁棒性 bounded rationality generalized games graph topology structurally stable robustness
  • 相关文献

参考文献7

二级参考文献50

  • 1张石生.不动点理论及应用[M].重庆:重庆出版社,1985..
  • 2Patrone,F., Well-posedness for Nash equilibria and related topics, In:R.Lucchetti and J.P.Revalski, eds., Recent Developments in Well-posed Variational Problems, Dordrecht:Kluwer Academic Publishers,1995,211-229.
  • 3Margiocco,M., Patrone, F., Pusillo Chicco L., A new approach to Tikhonov well-posedness for Nash equilibria, Optimization,1997,40:385-400.
  • 4Pusillo Chicco L., Approximate solutions and Tikhonov well-posedness for Nash equilibria, In:F. Giannessi, A. Maugeri and P.M. Pardalos eds., Nonsmooth Optimization and Variational Inequality Models,Dordrecht:Kluwer Academic Publishers,2001,221-246.
  • 5Margiocco, M., Patrone, F., Pusillo L., On the Tikhonov well-posedness of concave games and Cournot oligopoly games, Journal of Optimization Theory and Applications, 2002,112(2):361-379.
  • 6oban,M.M., Kenderov, P.S., Revalski, J.P., Generic well-posedness of optimization problems in topological spaces, Mathematika, 1989,36:301-324.
  • 7Dontchev, A.L., Zolezzi,T., Well-posed Optimization Problems, Berlin: Springer-Verlag,1993.
  • 8Kenderov, P.S., Revalski,J.P., Generic Well-posedness of optimization problems and the Banach-Mazur game, In:R.Lucchetti and J.P.Revalski,eds., Recent Developments in Well-posed Variational Problems,Dordrecht:Kluwer Academic Publishers,1995,117-136.
  • 9Revalski, J.P., Various aspects of well-posedness of optimization problems, In:R.Lucchetti and J.P.Revalski,eds., Recent Developments in Well-posed Variational Problems, Dordrecht:Kluwer Academic Publishers,1995,229-256.
  • 10Zolezzi,Z., Well-posedness criteria in optimization with application to the calculus of variations, Nonlinear Analysis:Theory, Method, and Applications,1995,25:437-453.

共引文献63

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部