期刊文献+

基于LBFGS-EKF算法的三维空间目标跟踪研究 被引量:3

Research on target tracking based on limited-memory BFGS and extended kalman filter in 3D-space
下载PDF
导出
摘要 人机交互中,人手与机器的交互是最通用的方式,因此手势交互研究是当今人机交互研究的重点之一。本文以Leap Motion为依据,对三维空间目标检测和跟踪进行研究,提出了一种限定内存扩展卡尔曼滤波算法(LBFGSEKF)。该算法在基于降低噪声所提出的EKF方法上,通过LBFGS算法求最优解的方式来代替EKF算法在每次迭代中求逆Hessian矩阵而造成内存消耗,计算速率下降,导致实时性差的问题,从而形成一种新的目标跟踪算法。仿真结果表明,新算法用于手势识别时,可以降低误差、提高目标跟踪的精度。 In human-computer interaction,the interaction between human-hands and machine is the most common way,so gesture interaction research is one of the focuses of human-computer interaction research today.Based on Leap Motion,this paper studies the three-dimensional space object detection and tracking,and proposes a new algorithmLBFGS-EKF algorithm.The algorithm is based on the EKF method proposed by reducing noise,through the method of the LBFGS algorithm is used to replace the Hessian matrix in each iteration instead of the EKF algorithm,which consumes memory and reduces the computational rate,resulting in poor real-time,thus forming a new target tracking algorithm.The simulation results show that by this new algorithm LBFGS-EKF for gesture recognition,the error can be reduced and the real-time performance of target tracking can be improved.
出处 《电子测量技术》 2017年第10期99-103,共5页 Electronic Measurement Technology
关键词 Leap MOTION 扩展卡尔曼滤波EKF LBFGS 三维空间 Leap Motion extended kalman filter(EKF) limited-memory BFGS(L-BFGS) three-dimensional space
  • 相关文献

参考文献11

二级参考文献83

  • 1夏佩伦,温洪.纯方位TMA的有偏性分析[J].火力与指挥控制,2002,27(5):21-25. 被引量:15
  • 2BAO Gang SUN Zhongsheng WANG Zuwen.FORCE FEEDBACK DATAGLOVE BASED ON PNEUMATIC ARTIFICIAL MUSCLES[J].Chinese Journal of Mechanical Engineering,2006,19(4):588-593. 被引量:4
  • 3Perry J M. A class of conjugate gradient algorithms with a twostep variable-metric memory [ C]//Center for Mathematical Studies in Economies and Management Science. Evanston Illiois: Northwestern University Press, 1977.
  • 4Shanno D F. Conjugate gradient methods with inexact searches [J] .Math Oper Res, 1978(3) :244 - 256.
  • 5Gill P E, Murray W. Canjugate gradient Methods for largescale nonlinear optimization [ R]. Stafford: Stanford University: 1979.
  • 6Buckley A. Combined conjugate gradient quasi- Newton minimization algotithins [ J]. Math Prog, 1978(15) :200 - 210.
  • 7Buckley A,LeNir A. QN-like variable storage conjugate gradients [J]. Math Prog, 1983(27) : 155 - 175.
  • 8Nocedal J. Updating quasi-Newton matrices with limited storage [J]. Math Comp, 1980(35):773 - 782.
  • 9FABIANI L, BURDEA G, LANGRANA N, et al. Human performance using the Rutgers master Ⅱ force feedback interface[C]//Proceedings of the 1996 Virtual Reality Annual International Symposium, Santa Clara, CA, USA, March 30-April 3, 1996: 54-59.
  • 10YAMAUCHI H, TANAKA Y, AMEMIYA K. Wearable haptic display for immersive virtual environment[J]. Bulletin of Computational Science Research Center of Hosei University, 2001, 14:1-6.

共引文献183

同被引文献24

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部