期刊文献+

带逆平方势的非线性Schrdinger方程的阻尼影响

Effect of Damping for Nonlinear Schrdinger Equation with Inverse Square Potential
下载PDF
导出
摘要 研究一类带逆平方势的阻尼非线性Schrdinger方程,此方程相对论分子物理中有磁性的粒子捕获电子的现象.物理上,阻尼通常弱化系统爆破.从数学上探究分析阻尼对系统爆破的精确影响.对于临界情形,建立一个产生爆破解的阻尼门槛.对于超临界情形,导出一个产生爆破解的阻尼区间. This work is to concern the damped nonlinear Schrdinger equation with inverse square potential,which models the process of an electron being captured by polar molecules in non-relativistic molecular physics. We are interested in the effect of the damping in this system. In physics,damping usually weakens the blowup of systems. We analyze and explore the exact effect of the damping in the view of mathematics. For the critical case,a threshold of the damping is established to derive the blowup solution. For the supercritical case,an interval of the damping is constructed to yield the blowup solution.
作者 夏滨
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2017年第6期802-808,共7页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11571245) 四川省教育厅重点科研项目(15ZA0031)
关键词 非线性Schrdinger方程 逆平方势 阻尼 爆破 nonlinear Schrodinger equation inverse square potential damping blowup
  • 相关文献

二级参考文献16

  • 1Frank W M, Land DJ,Spector R M. Singular potentials [J]. Rev. Modern Phys., 1971, 43(1): 36-98.
  • 2Landau L D,Lifshitz E M. Quantum Mechanics[M]. London-Paris: Pergamon Press Ltd., 1965.
  • 3Levy-LeblondJ M. Electron capture by polar molecules[J]. Phys. Rev., 1967, 153(1): 1-4.
  • 4Burq N, Planchon F, StalkerJ G, Tahvildar-Zadehd A S. Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential [J].Journal of Functional Analysis, 2003, 203(2): 519-549.
  • 5Felli V, Terracaini S. Nonlinear Schrodinger equations with symmetric multi-polar potentials[J]. Cal. Var. Partial Differential Equations, 2006, 27(1): 25-58.
  • 6Felli V, Marchini E M, Terracini S. On Schrodinger operators with multipolar inverse-square potentials Pl.Journal of Functional Analysis, 2007, 250(2): 265-316.
  • 7Felli V, Terracaini S. Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity[J]. Communications in Partial Differential Equations, 2006, 31(3): 469-495.
  • 8Felli V, Marchini E M, Terracini S. On Schrodinger operators with multisingular inverse-square anisotropic potentials Pl. Indiana Univ. Math.Journal, 2009, 58(2): 617-676.
  • 9Planchon F, StalkerJ G, Tahvildar-Zadehd A S. LP estimates for the wave equation with the inversesquare potential[J]. Discrete Contino Dyn. Syst., 2003, 9(2): 427-442.
  • 10Hardy G H, LittlewoodJ E, P6lya G. Inequalities[M]. Cambridge: Cambridge University Press, 1988.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部