期刊文献+

Structure, mechanical and thermal properties of BMI/E-44/CNTs ternary composites via amination method 被引量:1

Structure, mechanical and thermal properties of BMI/E-44/CNTs ternary composites via amination method
原文传递
导出
摘要 Multi-walled carbon nanotubes(CNTs) were modified by an amination treatment with hexamethylenediamine(HMD), and then bismaleimide(BMI)/epoxy(E-44)/CNTs ternary composites were prepared using modified CNTs as the reinforcement via a simple mixing and curing molding method. The results show that the surfaces of CNTs are grafted polymer with the thickness of 3 nm and the dispersity of surface grafted carbon nanotubes(SG-CNTs) in the resin composites can be improved. The prepared composites contain C-C, C-N, C=O and-COOH groups and can keep a smooth surface. In addition, the composites have the flexural strength of 152 MPa, the tensile strength of 73 MPa and the impact strength of 87 k J m^(-2),respectively, when the weight ratio of BMI to E-44 is 1:8 and the content of SG-CNTs is 2 wt%. However,the thermal stability of the composites with SG-CNTs is a little lower than that of the composites without SG-CNTs. Multi-walled carbon nanotubes(CNTs) were modified by an amination treatment with hexamethylenediamine(HMD), and then bismaleimide(BMI)/epoxy(E-44)/CNTs ternary composites were prepared using modified CNTs as the reinforcement via a simple mixing and curing molding method. The results show that the surfaces of CNTs are grafted polymer with the thickness of 3 nm and the dispersity of surface grafted carbon nanotubes(SG-CNTs) in the resin composites can be improved. The prepared composites contain C-C, C-N, C=O and-COOH groups and can keep a smooth surface. In addition, the composites have the flexural strength of 152 MPa, the tensile strength of 73 MPa and the impact strength of 87 k J m^(-2),respectively, when the weight ratio of BMI to E-44 is 1:8 and the content of SG-CNTs is 2 wt%. However,the thermal stability of the composites with SG-CNTs is a little lower than that of the composites without SG-CNTs.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第10期1187-1194,共8页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 51172180 and 51372200) the Scientific Research Plan Project of Shaanxi Education Department (Grant No. 16JK1551) the Science and Technology Plan of Xi’an (Grant No. CXY1430(9)) the China Postdoctoral Science Foundation Funded Project (Grant No. 2016M592824)
关键词 Surface grafted carbon nanotubes Composite materials Mechanical properties Thermal properties Surface grafted carbon nanotubes Composite materials Mechanical properties Thermal properties
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部