期刊文献+

混合动力汽车电池管理系统的均衡策略研究 被引量:4

Research on Equilibrium Strategy of Hybrid Electric Vehicle Battery Management System
下载PDF
导出
摘要 电池组的均衡技术是电池管理系统(BMS)的最关键技术之一。均衡技术可以大大减小电池组中各单体电池之间的差异,有效防止过充电和过放电,维持电池组的平衡,从而延长电池组的使用寿命,也极大地提高电池的使用效率。首先选择了电池均衡的判断标准,列举了无损和有损均衡的利弊,并着重分析了基于电感、电容、变压器等无损均衡方案,选择基于变压器的无损均衡,设计均衡电路与均衡控制策略,通过试验论证方案可行性,极大改善电池组各单体电池的不一致性。 Battery pack equalization technology is management system (BMS). Equalization technique one of the most critical technologies in battery can greatly reduce the difference between each single battery in the battery, effectively prevent overcharge and overdischarge, maintain battery balance, thereby prolonging the service life of the battery, and also greatly improve the use efficiency of the battery. This paper first selects the standard for battery equalization, enumerates the advantages and disadvantages of lossless balance and loss balance, and emphatically analyzes the inductance and capacitance, transformer and other lossless equalization scheme based on lossless transformer. Based on equi- librium selection, equalization circuit and balanced control strategy is designed, which is proved feasible, greatly improved the inconsistency between single cells of the battery group.
作者 张小荣 冯国胜 谷枫 邱文辉 Zhang Xiaorong Feng Guosheng Gu Feng Qiu Wenhui(Department of Electrical and Electronic Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Chin)
出处 《石家庄铁道大学学报(自然科学版)》 2017年第4期68-72,共5页 Journal of Shijiazhuang Tiedao University(Natural Science Edition)
基金 河北省引进留学人员资助项目(C2015005019) 石家庄市科研计划项目(161080401A)
关键词 电池管理系统 均衡控制策略 无损均衡 battery management system balance control strategy lossless equalization
  • 相关文献

参考文献4

二级参考文献20

  • 1宫学庚,齐铂金,刘有兵,杨清新,路宗利.电动汽车动力电池模型和SOC估算策略[J].电源技术,2004,28(10):633-636. 被引量:35
  • 2黄文华,韩晓东,陈全世,林成涛.电动汽车SOC估计算法与电池管理系统的研究[J].汽车工程,2007,29(3):198-202. 被引量:79
  • 3NICOLAOS B K. Reformulated radial basis neural net-works trained by gradient descent[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 657-671.
  • 4PLETT G. LiPB dynamic cell models for Kalman-filter SOC estimation[C]. Proceedings ofthe EVS-19, 2002.
  • 5MARK V. Generalized reeursive algorithm for adaptive multiparameter regression[J]. Journal ofthe Electrochemical Society, 153(1): A187-A201.
  • 6GREGORY L P. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 3[J]. State and parameter estimation, Power Sources, 2004, 134(2): 277-292.
  • 7GREGORY L P. Extended Kalman filtering for baRery management systems of LiPB-based HEV battery packs Part 1. Background[J]. Power Sources, 2004, 134(2): 252-261.
  • 8GREGORY L P. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2. Modeling and identification[J]. Power Sources, 2004, 134(2): 262-276.
  • 9OLIVER G,STEVEN C. Optimizing electric vehicle battery life through battery thermal management[C]. SAE Paper, 2010.
  • 10GREGORY L P, MARTIN J K. Advances in HEV Battery Management Systems[C]. SAE, 2006.

共引文献32

同被引文献14

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部