摘要
图G的一个点染色称为单射染色,如果任何两个有公共邻点的顶点染不同的颜色.一个图G称为单射k-可选择的,如果对于顶点V(G)的任何一个大小为k的允许颜色列表L,都存在一个单射染色φ,使得对于v∈V(G),有φ(v)∈L(v).使得G为单射k-可选择的最小k,称为G的列表单射染色数,记作χ_i^l(G).设G是最大度为Δ,围长为g的可嵌入到欧拉示性数χ(Σ)≥0的曲面Σ的一个图.证明了若Δ≥7且g≥6,则χ_i^l(G)≤Δ+3.
A vertex coloring of a graph G is called injective if any two vertices with a common neighbor receive distinct colors. A graph G is injectively k-choosable if any list L of admissible colors on V( G) of size k allows an injective coloring φ such that φ( v) ∈L( v) whenever v∈V( G). The least k for which G is injectively k-choosable is called the list injective coloring number of G,and denoted by χi^l( G). Let G be a graph embedded in a surface Σ of Euler characteristic χ( Σ) ≥0 with maximum degree Δ and girth g. We prove that χi^l( G) ≤Δ +3 if Δ≥7 and g≥6.
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2017年第5期523-526,共4页
Journal of Fudan University:Natural Science
基金
国家自然科学基金青年基金(11401386)
上海电机学院学科建设项目(16JCXK02)
关键词
嵌入图
列表单射染色
围长
embedded graph
list injective coloring
girth