摘要
研究了分担连续函数的全纯函数族的正规性问题,推广了一些已有的结论.设F为定义在区域D上的全纯函数族,h1,h2为两个连续函数满足对_z∈D有h1(z)≠h2(z),并设k≥2为正整数.若f∈F,有f(z)=hi(z)=〉|f(k)(z)|≤|hi(z)|,i=1,2,则F为D上的正规族;并举例说明了k=1时,结论不成立.此外,还将分担值条件用拓扑度条件代替得到了一个涉及拓扑度条件的全纯函数族正规定则.
It studies the normality of family of holomorphic functions sharing continuous function and extends some existing conclusions. Let F be a family of holomorphic functions defined on domain D,h1,h2 be two different continuous functions satisfied z∈D,h1( z) ≠h2( z),and k≥2 be a positive integer. If f∈F,such that f( z) = hi( z) =〉 | f( k)( z) | ≤ | hj( z) |,i = 1,2,then F is a normal family; An example is given to explain that the conclusion does not hold when k = 1.In addition,a normal criterion concerning topological degree is also got by replacing shared value condition with topological degree condition.
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2017年第5期533-536,544,共5页
Journal of Fudan University:Natural Science
基金
南昌工程学院青年基金(2014KJ025)
陕西铁路工程职业技术学院基金(2013-12)
关键词
正规族
全纯函数
值分布
拓扑度
normal family
holomorphic function
value distribution
topological degree