期刊文献+

Chebyshev谱配置方法求解反应扩散方程组 被引量:5

AN EFFICIENT CHEBYSHEV SPECTRAL COLLOCATION METHOD FOR THE SOLUTION OF REACTION DIFFUSION SYSTEMS
原文传递
导出
摘要 本文讨论了一种求解二维反应扩散方程组的高精度谱配置方法.考虑边界条件为齐次Neumann边界,在空间上采用Chebyshev谱配置方法离散,得到非线性常微分方程组(ODEs).在时间方向上,采用紧致隐式积分因子方法求解.该方法结合了谱方法和紧致隐式积分因子方法的特点,具有精度高,稳定性好,存储量小以及计算时间快等优点.最后给出数值算例验证了该方法的有效性. This paper discusses a new highly accurate spectral collocation method for the two- dimensional nonlinear reaction diffusion equations with Neumann boundary condition. Inthis work, first we apply the Chebyshev spectral collocation method for the space discretiza- tion of the reaction diffusion systems. We develop a nonlinear ordinary differential equations (ODEs) in matrix formulation after space discretization. The compact implicit integration factor (cIIF) method is later applied for the nonlinear ODEs. In this approach, the storage and CPU cost are significantly reduced such that the use of cIIF method becomes attrac- tive for two-dimensional reaction diffusion equations. Numerical results are presented to demonstrate the accuracy, stability, and efficiency of the method.
出处 《数值计算与计算机应用》 2017年第4期271-281,共11页 Journal on Numerical Methods and Computer Applications
基金 国防科技重点实验室基金(6142A050202) 国家自然科学基金(11571002 11171281 61703290) 中国工程物理研究院科学基金(2013A0202011 201580101021) 国防基础科研计划资助(B1520133015)
关键词 Chebyshev谱配置 非线性 反应扩散方程组 紧致隐积分因子 Chebyshev spectral collocation method Nonlinear Reaction diffusion sys-tems Compact implicit integration factor method
  • 相关文献

参考文献1

二级参考文献13

  • 1张晓丹,段雅丽.PC-MG方法解反应-扩散方程组[J].高等学校计算数学学报,2005,27(S1):270-275. 被引量:5
  • 2Lang J and Walter A. A finite element method adaptive in space and time for nonlinear reaction-diffusion systems. IMPACT Comput. Sci. Engrg.. 1992, 4:269-314.
  • 3Zhang R, Yu X, Zhu J and Loula A F D. Direct discontinuous Galerkin method for nonlinear reaction-diffusion systems in pattern formation. Appl. Math. Mod., 2014 38:1612-1621.
  • 4Cockburn B and Shu, C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework, Math. Comp.,1989,52:411- 435.
  • 5Qiu J x, Khoo B C and Shu C W. A numerical study for the performance of the Runge- Kutta discontinuous Galerkin method based on different numerical fluxes. J. Comput. Phys., 2006,212: 540-565.
  • 6Shu C W, Different formulations of the discontinuous galerkin method for the viscous terms. Advances in Scientific Computing, Z.-C. Shi, M.Mu,W. Xue and J. Zou, eds., Science Press, China, 2001: 144-155.
  • 7Cockburn B and Shu C W, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 1998, 35: 2440-2463.
  • 8Baumann C E and Oden J T, A discontinuous hp finite element method for convection diffusion problems, Comput. Methods Appl. Mech. Engrg., 1999, 175: 311-341.
  • 9Liu H, Yan J, The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal., 2009,47 : 675-698.
  • 10G. Gassner, F. L6rcher and C. A. Munz. A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys., 2007,224: 1049-1063.

共引文献3

同被引文献5

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部