摘要
本文研究一类具有代表性的约束可分离凸优化模型,其目标函数中的数据误差项满足可微性条件,许多图像恢复和图像重建等问题都可以归结为该模型的求解.为克服现有求解该模型方法的不足,文中首先借助指示函数,将原模型转化为无约束的凸优化模型;然后基于原始对偶分裂方法思想,提出一种新的迭代算法,该算法具有结构简单和参数选取容易的特点,同时证明所提算法的收敛性.最后,为验证算法的有效性,我们将其应用于CT图像重建问题,数值实验结果表明所提出的算法在重建时间和重建图像质量上优于现有的其他算法.
In this paper, we study a constrained separable convex optimization model, in which the data error term in the objective function is differentiable. Many problems arising in image restoration and image reconstruction are the special cases of this convex optimization problem.In order to overcome the shortcomings of existing methods for solving this model, we transform the original problem into an unconstrained convex optimization problem by using an indicator function. Then, we propose a new iterative algorithm, which is based on the idea of the primaldual splitting method. The proposed algorithm has a simple structure and is easy for parameter selection. At the same time, we prove the convergence of the new iterative algorithm. Finally,to verify its effectiveness, we apply the algorithm to CT image reconstruction. Numerical experiments show that the proposed algorithm outperforms existing iterative algorithms in terms of reconstruction time and reconstruction image quality.
出处
《工程数学学报》
CSCD
北大核心
2017年第6期609-621,共13页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(11401293
11461046
11661056)
中国博士后科学基金(2015M571989)
中国科学院数学与系统科学研究院访问基金(AM201622C04)
江西省自然科学基金(20151BAB211010
20142BAB211-016)
江西省博士后科学基金(2015KY51)~~
关键词
可分凸规划
原始对偶分裂方法
图像重建
邻近算子
separable convex programs
primal-dual splitting method
image reconstruction
proximity operator