期刊文献+

基于原始对偶分裂方法求解一类约束可分离凸优化问题及其应用 被引量:1

Algorithm Based on Primal-dual Splitting Method for Solving a Class of Constrained Separable Convex Optimization Problem and its Application
下载PDF
导出
摘要 本文研究一类具有代表性的约束可分离凸优化模型,其目标函数中的数据误差项满足可微性条件,许多图像恢复和图像重建等问题都可以归结为该模型的求解.为克服现有求解该模型方法的不足,文中首先借助指示函数,将原模型转化为无约束的凸优化模型;然后基于原始对偶分裂方法思想,提出一种新的迭代算法,该算法具有结构简单和参数选取容易的特点,同时证明所提算法的收敛性.最后,为验证算法的有效性,我们将其应用于CT图像重建问题,数值实验结果表明所提出的算法在重建时间和重建图像质量上优于现有的其他算法. In this paper, we study a constrained separable convex optimization model, in which the data error term in the objective function is differentiable. Many problems arising in image restoration and image reconstruction are the special cases of this convex optimization problem.In order to overcome the shortcomings of existing methods for solving this model, we transform the original problem into an unconstrained convex optimization problem by using an indicator function. Then, we propose a new iterative algorithm, which is based on the idea of the primaldual splitting method. The proposed algorithm has a simple structure and is easy for parameter selection. At the same time, we prove the convergence of the new iterative algorithm. Finally,to verify its effectiveness, we apply the algorithm to CT image reconstruction. Numerical experiments show that the proposed algorithm outperforms existing iterative algorithms in terms of reconstruction time and reconstruction image quality.
出处 《工程数学学报》 CSCD 北大核心 2017年第6期609-621,共13页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11401293 11461046 11661056) 中国博士后科学基金(2015M571989) 中国科学院数学与系统科学研究院访问基金(AM201622C04) 江西省自然科学基金(20151BAB211010 20142BAB211-016) 江西省博士后科学基金(2015KY51)~~
关键词 可分凸规划 原始对偶分裂方法 图像重建 邻近算子 separable convex programs primal-dual splitting method image reconstruction proximity operator
  • 相关文献

参考文献4

二级参考文献63

  • 1Combettes P L, Wajs V R. Signal recovery by proximal forward-backward splitting [ J ]. Multiscale Modeling and Simulation, 2005,4(4) :1 168-1 200.
  • 2Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D : Nonlinear Phenomena, 1992,60 ( 1/4 ) : 259 -268.
  • 3Chen P, Huang J, Zhang X. A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration [ J ]. Inverse Problems,2013,29 ( 2 ) :025011 ( 1-33 ).
  • 4Miechelli C A, Shen L, Xu Y. Proximity algorithms for image models : denoising [ J ]. Inverse Problems, 2011,27 ( 4 ) : 045009 (1-30).
  • 5Goldstein T, Osher S. The split Bregman method for L1 -regularized problems [ J ]. SIAM Journal on Imaging Sciences, 2009, 2(2) :323-343.
  • 6Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging [ J ]. Journal of Mathematical Imaging and Vision,2011,40 ( 1 ) : 120-145.
  • 7Zhang X, Burger M, Osher S. A unified primal-dual algorithm framework based on Bregman iteration [ J ]. Journal of Scientific Computing,2011,46 ( 1 ) : 20-46.
  • 8Esser E, Zhang X, Chan T F. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science [ J ]. SIAM Journal on Imaging Sciences, 2010,3 (4) : 1 015-1 046.
  • 9Avinash C, Malcolm S. Principles of Computerized Tomographic Imaging[ M ]. Philadelphia: SIAM ,2001.
  • 10Cand~s E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete Fourier information[J]. IEEE Transactions on Signal Processing, 2006, 52(2): 489-509.

共引文献10

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部