期刊文献+

Ito型耦合KdV方程的高阶保能量方法 被引量:1

High Order Energy Preserving Method for the Ito-type Coupled KdV Equations
下载PDF
导出
摘要 构造具有能量守恒特性的Ito型耦合KdV方程的高阶保能量格式在模拟方程的运动中有重要的意义.本文利用四阶平均向量场方法和拟谱方法得到了Ito型耦合KdV方程的高阶保能量格式,并利用高阶保能量格式数值模拟方程孤立波的演化行为.数值结果表明新的高阶保能量格式能很好地模拟Ito型耦合KdV方程孤立波的行为,且精确地保持了方程的离散能量守恒. Constructing the high order energy preserving scheme for the Ito-type coupled KdV equation with the energy conservation property has the important application in simulating the motion of the equation. In this paper, the high order energy preserving scheme for the Ito-type coupled KdV equation is obtained by applying the fourth order average vector field method and the Fourier pseudo spectral method. The new high order energy preserving scheme is applied to simulate the solitary wave behaviors of the equation. Numerical results show the new high order energy preserving scheme can well simulate the solitary wave evolution behaviors of the Ito-type coupled KdV equation and preserve the discrete energy conservation exactly.
出处 《工程数学学报》 CSCD 北大核心 2017年第6期646-654,共9页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11561018) 海南省自然科学基金(20167246)~~
关键词 平均向量场方法 高阶保能量方法 孤立波 Ito型耦合KdV方程 average vector field method high order energy-preserving method the solitary wave the Ito-type coupled KdV equation
  • 相关文献

参考文献2

二级参考文献33

  • 1Benney D J and Newell A C 1967 J. Math. Phys. 46 133.
  • 2Wang Y S and Li S T 2010 Int. J. Comput. Math. 87 775.
  • 3Ismail M S and Taha T R 2001 Math. Comput. Simul. 56 547.
  • 4Ismail M S and Alamri S Z 2004 Int. J. Comput. Math. 81 333.
  • 5Ismail M S and Taha T R 2007 Math. Comput. Simul. 74 302.
  • 6Sun J Q and Qin M Z 2003 Comput. Phys. Commun. 155 221.
  • 7Sun J Q, Gu X Y and Ma Z Q 2004 Physica D 196 311.
  • 8Sun J Q, Qin M Z, Wei H and Dong D G 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1259.
  • 9Aydm A and Karasozen B 2007 Comput. Phys. Commun. 177 566.
  • 10Wang T C, Zhang L M and Chen F Q 2008 Appl. Math. Comput. 203 413.

共引文献6

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部