摘要
将金刚石磨粒简化为球形磨粒,从单颗微磨削力模型入手,结合动态磨刃分布模型建立了多颗磨粒微磨削力学模型;结合FME和SPH的方法建立磨粒随机分布的多颗磨粒微磨削力模型;利用所建立的力学预测模型和仿真模型,对不同进给速度和磨削深度时所对应的微磨削力进行研究,并将模拟结果与试验进行对比。结果表明:所建仿真模型可实现多颗磨粒立式微磨削的过程,且结果与试验结果吻合较好,为后续研究多颗磨粒微磨削仿真奠定了基础。
The typical diamond abrasive grain is simplified into sphere. Micro-grinding force model of multi abrasive grains is set up based on combine the grinding force of single abrasive grain and the model of dynamic cutting edges. A multi abrasive micro grinding force simulation model based on FME and SPH was established. Based on the established mechanical prediction model and simulation model,the micro grinding force corresponding to different feed rate and grinding depth is studied,and the simulation results are compared with the experimental results. The results show that the simulation model by built can realize the vertical micro grinding with multiple abrasive grains process; and the whole process is in good agreement with the experimental results. It can lay the foundation for the simulation of multi abrasive grains micro grinding.
出处
《黑龙江科学》
2017年第21期1-5,共5页
Heilongjiang Science
关键词
多颗磨粒
微磨削
FME
SPH
Multi abrasive grains
Micro-grinding
FEM
SPH