摘要
复杂的非视距传播(NLOS)环境带来的误差会严重影响定位算法的精度和稳健性,单纯的迭代优化算法面对大量的NLOS误差表现得并不理想。针对经典的TOA算法对非视距传播误差的敏感性问题,引入Bootstrap抽样及蒙特卡罗思想,提出了一种改进的TOA算法。利用随机化的思想对误差分布进行更加精确的识别,并通过随机模拟还原直线传播数据,结合牛顿迭代法对移动终端进行精确定位。实证分析证明,这种改进的TOA算法具有更高的精确性和稳健性。
The error caused by the complex non line of sight(NLOS)environment seriously affects the accuracy and robustness of the localization algorithm,the results only obtained by iterative optimization algorithm are not satisfactory faced with a large number of NLOS errors.Aiming at the sensitivity of the classical TOA algorithm to NLOS propagation error,an improved TOA algorithm considering of Bootstrap sampling and Monte Carlo is proposed.The idea of randomization is used to identify the distribution of error more accurately,and the linear propagation data of signal are reduced by random simulation,combined with the Newton iterative method for mobile terminal positioning.Finally,the empirical analysis shows that the improved TOA algorithm has higher accuracy and robustness.
出处
《统计与信息论坛》
CSSCI
北大核心
2017年第12期16-21,共6页
Journal of Statistics and Information
基金
全国统计科学研究重点项目<网络交易价格的大数据统计与数据挖掘方法研究>(2014LZ41)