期刊文献+

Morphology Effect of Metal-organic Framework HKUST-1 as a Catalyst on Benzene Oxidation 被引量:3

Morphology Effect of Metal-organic Framework HKUST-1 as a Catalyst on Benzene Oxidation
原文传递
导出
摘要 An attempt was made to study whether the morphology effect of metal-organic frameworks HKUST-1 could significantly influence the chemical reaction of benzene oxidation. Four representative cupric salts, CuSO4' 5H20, Cu(OAc)a-H20, CuCI2.2H20 and Cu(NO3)2 3H20, were treated with 1,3,5-benzenetricarboxylic acid under ultrasound or with static method at room temperature to prepare metal-organic frarneworks(12 types of HKUST-1 samples). And the as-prepared HKUST-1 materials were comprehensively investigated by X-ray diffraction, scanning electron microscopy and N2 adsorption-desorption. The HKUST-1 samples with different morphologies and characterisitcs were employed as catalysts for benzene oxidation with H2O2 as oxidant at 60 ℃ in acetonitrile to achieve the aromatic oxygenates and test their yields. In all the HKUST-1 samples, the HKUST-1/SA, HKUST-1/SA0 and HKUST-1/UN had the higher catalytic activities with the yields of benzene oxygenates of 15.9%, 16.6% and 11.7%, respectively, which can be ascribed to the larger pore volume, the stronger benzene adsorption and the smaller fme crystal particles. Comparatively, the HKUST-1/SN0 and HKUST-1/SC0 with more intact crystal, larger surface area, lower pore volume and weaker benzene adsorption had the lower catalytic activities with the yields of benzene oxygenates not more than 4%. Therefore, our results confumed that employing various cupric precursors to prepare the HKUST-1 samples with different morphologies and characteristics can be considered as a worth strategy to design many more powerful heterogeneous catalysts. An attempt was made to study whether the morphology effect of metal-organic frameworks HKUST-1 could significantly influence the chemical reaction of benzene oxidation. Four representative cupric salts, CuSO4' 5H20, Cu(OAc)a-H20, CuCI2.2H20 and Cu(NO3)2 3H20, were treated with 1,3,5-benzenetricarboxylic acid under ultrasound or with static method at room temperature to prepare metal-organic frarneworks(12 types of HKUST-1 samples). And the as-prepared HKUST-1 materials were comprehensively investigated by X-ray diffraction, scanning electron microscopy and N2 adsorption-desorption. The HKUST-1 samples with different morphologies and characterisitcs were employed as catalysts for benzene oxidation with H2O2 as oxidant at 60 ℃ in acetonitrile to achieve the aromatic oxygenates and test their yields. In all the HKUST-1 samples, the HKUST-1/SA, HKUST-1/SA0 and HKUST-1/UN had the higher catalytic activities with the yields of benzene oxygenates of 15.9%, 16.6% and 11.7%, respectively, which can be ascribed to the larger pore volume, the stronger benzene adsorption and the smaller fme crystal particles. Comparatively, the HKUST-1/SN0 and HKUST-1/SC0 with more intact crystal, larger surface area, lower pore volume and weaker benzene adsorption had the lower catalytic activities with the yields of benzene oxygenates not more than 4%. Therefore, our results confumed that employing various cupric precursors to prepare the HKUST-1 samples with different morphologies and characteristics can be considered as a worth strategy to design many more powerful heterogeneous catalysts.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2017年第6期971-978,共8页 高等学校化学研究(英文版)
基金 Supported by the Natural Science Foundation of Haman Province, China(No.213010) and the Natural Science Foundation of Haman University, China(No. kyqd1612).
关键词 HKUST-1 Metal-organic framework Morphology effect Catalytic reaction BENZENE HKUST-1 Metal-organic framework Morphology effect Catalytic reaction Benzene
  • 相关文献

同被引文献15

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部