期刊文献+

放电等离子烧结制备生物Mg-Zn合金的组织及性能 被引量:1

Microstructures and Mechanical Properties of Biodegradable Magnesium-Zinc Alloy Fabricated by Spark Plasma Sintering
原文传递
导出
摘要 以Mg粉和Zn粉为原料,采用高能球磨混粉和放电等离子烧结(SPS)的方法制备了Zn含量为0%,2%,4%,6%,8%(质量分数)的生物Mg-Zn合金,对其显微组织、力学性能和腐蚀性能进行了研究。结果表明:制备的Mg-Zn合金内部结构致密,组织分布均匀;显微硬度(HV)和抗压强度随Zn含量的增加而增加,当Zn含量为6%时达到最大值(690和379.5 MPa);模拟体液中的电化学腐蚀电位随Zn含量的增加而升高,腐蚀电流密度则降低,在6%时分别达到最大值和最小值。浸泡试验中,Zn含量为6%合金表现出最好的耐腐蚀性能,随Zn含量的增加,腐蚀形式由严重的点蚀和颗粒剥落转变为轻微的点蚀和颗粒内均匀的晶内腐蚀。 Biological Mg-x%Zn(x=2, 4, 6, 8, mass fraction) alloys were fabricated from pure magnesium and zinc powders using high-energy ball milling and spark plasma sintering. The microstructure, mechanical properties and corrosion performance of the biological Mg-Zn alloys were investigated. The results show that the sintered samples have a compact and homogenous internal structure. The hardness(HV) and compression strength of the alloys increase with increasing Zn content, which reach their maximum(690 and 379.5 MPa, respectively) when Zn content is 6%. The corrosion potential increases with increasing Zn content, while the current density declines, which achieve their maximum and minimum, respectively when Zn content is 6%. Mg-6%Zn alloy shows the optimal corrosion resistance. Moreover, the corrosion mode in SBF transforms from severe crevice corrosion and pitting corrosion into internal corrosion of particles and slight pitting corrosion with the Zn content increasing.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2017年第11期3518-3524,共7页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51305292)
关键词 生物Mg-Zn合金 放电等离子烧结 高能球磨 力学性能 腐蚀性能 bio-Mg-Zn alloy spark plasma sintering high-energy ball milling mechanical properties corrosion properties
  • 相关文献

参考文献3

二级参考文献63

  • 1黄晶晶,任伊宾,张炳春,杨柯.镁及镁合金的生物相容性研究[J].稀有金属材料与工程,2007,36(6):1102-1105. 被引量:38
  • 2Staiger M P, Pietak A M, HuadmaiJ, et al. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006, 27: 1728- 1734
  • 3Witte F, Fischer J, NellesenJ, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27(7): 1013- 1018
  • 4Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557-3563
  • 5Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials, 2007, 28(13): 2163-2174
  • 6Toolan B C. Current concepts review: Orthobiologics. Foot Ankle Int, 2006, 27(7): 561-566
  • 7Ryan G, Pandit A, Apatsidis D P. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 2006, 27(13): 2651-2670
  • 8Rodeo S A, Maher S A, Hidaka C. What's new in orthopaedic research. J Bone Joint Surg Am, 2004, 86(9): 2085-2095
  • 9GreyJ E, Luan B. Protective coatings on magnesium and its alloys-a critical review. J Alloy Comp, 2002, 336:88-113
  • 10Pietak A, Mahoney P, Dias G J, et al. Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci Mater Med, 2008, 19(1): 407-415

共引文献70

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部