摘要
研究一个具有分布时滞和饱和发生率的海洛因传染病模型。计算得到疾病的基本再生数;分析相应特征方程根的分布,研究系统可行平衡点的局部渐近稳定性;构造适当的Lyapunov泛函和应用La Salle不变性原理,证明当基本再生数小于1时,系统的无病平衡点全局渐近稳定;当基本再生数大于1时,系统的地方病平衡点全局渐近稳定。
Consider a heroin epidemic model with distributed delay and saturated incidence rate. The basic reproduction number is obtained by computing. The locally stability of feasible equilibrium is stud- ied by analyzing the distribution of characteristic roots of the model. By constructing suitable Lyapunov functional and applying LaSalle invariable principle, it is shown that the disease-free equilibrium is global asymptotically stable if the basic reproduction number is less than unity ; and the endemic equilibrium is globally asymptotically stable if the basic reproduction number is greater than unity.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2017年第5期524-530,共7页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(10371368)
关键词
海洛因模型
饱和发生率
基本再生数
全局稳定性
heroin epidemic model
saturated incidence rate
basic reproduction number
global stability