摘要
因肺部CT图像的三维重建在医学影像分析领域需求较大且难度较高,单独使用一种分割算法的去噪声效果不理想,故提出了将总变分模型与模糊C-均值聚类方法相结合,对CT数据进行分割去噪的方法。将分割后的图像导入自主研发的三维重建软件TM_MIS,它以VTK工具包为基础,使用MC算法和光线投影法对平滑去噪后的CT图像进行三维重建,得到三维虚拟模型。再用3D打印生成肺部血管及病灶的3D模型,代替传统的医生查看CT片的方法,为术前方案的制定及手术过程的模拟提供了更加科学的依据。实验表明,将肺部CT数据通过总变分模型进行去噪平滑,再结合模糊C-均值聚类方法进行分割得到的图像更加清晰,重建后的模型效果更理想。
Three-dimensional (3D) reconstruction on medical (CT) lung images is a demanding but tough area in medical image analysis. The effect of de-noising is unsatisfactory by using segmentation method alone, The combination of total variation model with fuzzy C-means clustering method is proposed to segment CT images and realize denoising. The segmented images are imported into the TM_MIS which is an independent-developed 3D reconstruction software. Based on the visualization toolkit, the marching cube and ray casting algorithms are applied to the processed images so as to generate the 3D virtual mod- el. Then 3D models of the blood vessels and lesions of the lungs are printed instead of the traditional way to check CT, so as to provide a more scientific basis for the development of preoperative program. Nu- merical experimental results validate the effectiveness and performance of the methods on the real medical CT lung images, which show that the effect of 3D reconstruction is more satisfactory.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2017年第5期608-613,共6页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(31570712)
关键词
三维重建
CT
总变分
3D打印
3D reconstruction
CT
total variation
3D printing