期刊文献+

新的似零范数的分块压缩感知图像重构 被引量:4

New Image Reconstruction Algorithm for Block Compressed Sensing with Approximate l_0 Norm
下载PDF
导出
摘要 针对提高压缩感知图像重构精度的问题,提出新的近似l0范数的函数,并结合牛顿算法实现图像重构.首先选用冗余脊波变换矩阵作为稀疏表示图像的基函数,利用正交匹配追踪算法对图像进行稀疏化.重构过程基于压缩感知理论,结合似零范数算法思想,用一个简单的分式函数来近似估计l0范数,并通过牛顿迭代算法求得稀疏解,从而实现了二维图像重构,融合了似零范数算法快速收敛和牛顿迭代法高精度的优点.仿真实验结果表明,在相同的条件下,相比于现有的其他同类算法,该算法重构的图像精度更高,有效地提高了压缩感知图像重构的质量. For the problem of improving quality of image reconstruction, a new function is proposed to approximate/0norm. Firstly, or- thogonal matching pursuit algorithm is chosen to represent image sparsely based on ridgelet redundant dictionary. Then, the Newton iterative algorithm determines the optimal sparse solution based on compressed sensing. A simple fractional function is used to approximate l0 norm. Fast convergence of approximate l0norm algorithm and the advantage in accuracy of Newton iterative algorithm are combined. Finally, simulation results show that compared to other similar algorithms, the proposed algorithm can effectively improve image quality and precision in compressed sensing, while providing the same conditions.
机构地区 燕山大学理学院
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第12期2807-2811,共5页 Journal of Chinese Computer Systems
基金 燕山大学青年教师自主研究计划理工A类课题项目(LGA016)资助
关键词 压缩感知 图像重构 l0范数 牛顿迭代 compressed sensing image reconstruction l0 norm Newton iteration
  • 相关文献

参考文献3

二级参考文献45

  • 1Candès E J,Wakin M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21 30
  • 2Baraniuk R G.Compressive sensing[J].IEEE SignalProcessing Magazine,2007,24(4):118 121
  • 3Candès E J,Romberg J K,Tao T.Stable signal recoveryfrom incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207 1223
  • 4Blumensath T,Davies M E.Gradient pursuits[J].IEEETransactions on Signal Processing,2008,56(6):2370 2382
  • 5Dai W,Milenkovic O.Subspace pursuit for compressivesensing signal reconstruction[J].IEEE Transactions onInformation Theory,2009,55(5):2230 2249
  • 6Mallat S G,Zhang Z F.Matching pursuits withtime-frequency dictionaries[J].IEEE Transactions on SignalProcessing,1993,41(12):3397 3415
  • 7Tropp J A,Gilbert A C.Signal recovery from randommeasurements via orthogonal matching pursuit[J].IEEETransactions on Information Theory,2007,53(12):46554666
  • 8Needell D,Vershynin R.Uniform uncertainty principle andsignal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,9(3):317 334
  • 9Figueiredo M A T,Nowak R D,Wright S J.Gradientprojection for sparse reconstruction:application to compressedsensing and other inverse problems[J].IEEE Journal ofSelected Topics in Signal Processing,2007,1(4):586 597
  • 10Chen S S,Donoho D L,Saunders M A.Atomicdecomposition by basis pursuit[J].SIAM Journal of ScientificComputing,1998,20(1):33 61

共引文献109

同被引文献23

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部