期刊文献+

教育大数据背景下log数据挖掘与应用——以PISA(2012)中国区问题解决测验为例 被引量:5

Mining and Application of Log Data under the Background of Educational Big Data:Taking Problem-solving Test of China in PISA(2012) as An Example
下载PDF
导出
摘要 log数据是教育大数据的一个子集,为分析问题解决过程提供了新的思路。文章截取PISA(2012)中国区的log数据,采用关系挖掘、聚类等教育数据挖掘方法 ,分析"交通"一题的答题时间、鼠标点击数,以及使用"有目的试误"策略情况。结果显示:(1)台湾和上海形成强烈反差,上海学生在高百分位上的解题时间和鼠标点击次数都较低,说明他们可能更在意时间成本;(2)"有目的试误"策略不仅有助于解答"交通"一题,其在体现个体问题解决能力中仍处于重要位置;(3)依据使用"有目的试误"策略的程度,学生的问题解决过程可分为5个群组(最优组、有目的试误组、其他策略组、只顾玩乐组、功能障碍组),台湾在"最优组"表现最好,香港在"只顾玩乐组""功能障碍组"比例最高。可见,log数据在分析问题解决过程、辨别问题解决群组、发展基于证据的教育决策等方面有其重要作用。 Log data is a subset of educational big data, and it provides a new way to analyze problemsolving process. This paper captures the log data of China in PISA(2012), and adopts educational data mining methods such as relationship mining, clustering to analyze students' problem-solving time, mouse clicks, and the use of "purposeful trial-and-error" when dealing with the item TRAFFIC. The results indicate that there is a sharp contrast between students in Taiwan and those in Shanghai, while students in Shanghai have lower problem-solving time and mouse clicks suggesting that they may be more concerned about time cost.(2) The "purposeful trial and error" strategy not only helps students to solve the item TRAFFIC, but is still in an important position in the embodiment of individual problem-solving ability.According to the degree of using this strategy, problem-solving process can be divided into five groups: the optimal group, the purposeful trial-and-error group, other policy group, the play group, and the dysfunction group. Taiwan performes best in the optimal group, while Hong Kong has the highest ratio of "play group"and "dysfunction group". Thus, log data plays an important role in analyzing problem-solving process,identifying problem-solving groups, and developing evidence-based educational decision-making.
出处 《电化教育研究》 CSSCI 北大核心 2017年第12期58-64,共7页 E-education Research
基金 北京师范大学中国基础教育质量监测协同创新中心研究生自主课题(课题编号:SXSP-2016A2-15001) 中央高校基本科研业务费专项资助"基于项目的STEM学习国际比较研究"(项目编号:2016CBY017)
关键词 教育大数据 PISA 问题解决 log数据 Educational Big Data PISA Problem Solving Log Data
  • 相关文献

参考文献5

二级参考文献62

  • 1陶雪娇,胡晓峰,刘洋.大数据研究综述[J].系统仿真学报,2013,25(S1):142-146. 被引量:344
  • 2翟博.教育均衡发展:理论、指标及测算方法[J].教育研究,2006,27(3):16-28. 被引量:313
  • 3杨永斌.数据挖掘技术在教育中的应用研究[J].计算机科学,2006,33(12):284-286. 被引量:58
  • 4教育部,普通高中技术课程标准[M].北京:人民教育出版社,2003.
  • 5[1]Gilhooly K J. Thinking: Directed, undirected and creative [ M ].London: Academic Press, 1988.
  • 6[2]Greeno J G. Nature of problem-solving abilities[A]. In: W K Estes ( Ed. ), Human information processing [ C ]. Hillsdale, NJ:Lawrence Erlbaum Associates, 1978.
  • 7[3]Sternber R J.超越IQ:人类智力的三元理论[M].(俞晓林,吴国宏译)上海:华东师范大学出版社,2000.
  • 8[4]司马贺(Simon H A).人类的认知--思维的信息加工理论[M].(荆其诚,张厚粲译)北京:科学出版社,1986.
  • 9[5]Simon H A. Information-processing theory of human problem solving [A]. In: W K Estes (Ed.), Human information processing[C].Hillsdale, NJ: Lawrence Erlbaum Associates, 1978.
  • 10[6]Kotovsky K, Hayes J R, Simon H A. Why are some problems hard? Evidence from Tower of Hanoi [ J ]. Cognitive Psychology,1985, (17), 248 - 294.

共引文献346

同被引文献38

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部