摘要
目的探究经碱酸热处理的选择性激光熔覆微孔钛在体外生物学活性方面是否具有优势。方法制备光滑组(PT组)、喷砂酸蚀组(SLA组)、亲水组(ModS LA组)、选择性激光熔覆组(SLM组)、选择性激光熔覆-碱酸热处理组(SLM-T组)5种不同的钛表面,对各组试件表面人类血清白蛋白(HSA)吸附行为进行研究,在各组试件表面接种小鼠骨髓间充质干细胞(BMSCs)进行培养,评价不同钛试件表面的体外生物学活性。结果在5、10、20、40、60 min时,SLM-T组对HSA具有相对良好的吸附特性。第1、3、5天,与其他3组相比,SLM组和SLM-T组表现出最为显著的增殖活性,差异有统计学意义(P<0.01),第7天,5组试件碱性磷酸酶(AKP)的表达水平差异无统计学意义;第14天,SLM-T组有着最为显著的AKP表达水平,差异有统计学意义(P<0.01),SLM组与PT组的AKP表达水平差异无统计学意义。结论体外实验表明,经碱酸热处理的选择性激光熔覆微孔钛具有良好的体外生物学活性,可望促进骨结合,潜在地提升种植体植入后的初期稳定性。
Objective To investigate whether the micropores titanium produced by the selective laser melting technology has an advantage biological activity in vitro. Methods First,five different titanium specimens of PT,SLA,Mod SLA,SLM and SLM-T were prepared,to investigate the adsorption behavior of human serum albumin on the surface of specimen,BMSCs were cultured on the surface of the specimens to evaluate the biological activity of the different titanium specimens in vitro. Results At 5,10,20,40 and 60 min,the protein adsorption on the surface of the five specimens was statistically significant( P〈0. 05). The SLM-T had the most excellent adsorption properties to human serum albumin. At 1,3 and 5 days,the proliferation of SLM-T and SLM was significantly higher than that of the other three groups. At 7 days,there was no significant difference in the expression level of AKP between the five groups. At 14 days,the SLM-T had the most significant AKP expression level( P〈0. 01). There was no significant difference in AKP expression between SLM and PT. Conclusion The results of protein adsorption experiments show that the selective laser melting micropores titanium has the best adsorption properties after alkali heat treatment and show excellent biocompatibility in vitro. It is expected to promote osseointegration and potentially enhance the initial stability of implants.
出处
《安徽医科大学学报》
CAS
北大核心
2017年第12期1805-1809,共5页
Acta Universitatis Medicinalis Anhui
基金
安徽省自然科学基金(编号:1508085MH156)
安徽省学术和技术带头人科研活动经费资助项目(编号:2016H075)
关键词
微孔钛
选择性激光熔覆
生物学活性
骨结合
micropores ti
selective laser melting
biological activity
osseointegration