期刊文献+

基于噪声一致性的数字语音异源拼接篡改检测算法 被引量:8

Tampering detection algorithm based on noise consistency for digital voice heterologous splicing
下载PDF
导出
摘要 异源拼接是一种常见的数字语音篡改行为,其主要借助音频编辑软件将不同场景中录制的语音片段拼接在一起,以达到改变语音语义的目的。考虑到不同场景中所包含的背景噪声特性往往存在差异,提出了一种基于噪声一致性的数字语音异源拼接篡改检测算法。首先,采用时间递归平均(TRA)算法提取待检测语音中所含噪声;然后,通过突变点检测(CPD)算法检测噪声方差是否存在突变来判定待检测语音是否经过篡改,并对篡改位置作出定位。实验仿真结果表明,所提算法能对数字语音中的异源篡改位置进行有效检测。 Heterologous splicing is a typical tampering behavior for digital voice. It mainly uses the audio editing software to splice the voice clips recorded in different scenes, so as to achieve the purpose of changing the semantics of voice. Considering the difference of background noise in different scenes, a tampering detection algorithm based on noise consistency for digital voice heterologous splicing was proposed. Firstly, the Time-Recursive Averaging (TRA) algorithm was applied to extract the background noise contained in the voice to be detected. Then, the Change-Point Detection (CPD) algorithm was used to detect whether abrupt changes existed in the noise variance, which was used to determine whether the voice was tampered, and to locate the tampering position of the testing voice. The experimental re.suits show that the proposed algorithm can achieve good performance in detecting the tampering position of heterologons splicing for digital voice.
出处 《计算机应用》 CSCD 北大核心 2017年第12期3452-3457,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61672302 61300055) 浙江省自然科学基金资助项目(LZ15F020002 LY17F020010)~~
关键词 语音取证 噪声估计 篡改检测 突变点检测 voice forensics noise estimation tampering detection Change-Point Detection (CPD)
  • 相关文献

参考文献2

二级参考文献21

  • 1Shao Jidong, Rong Gang, Lee Jongmin. Learning a data- dependent kernel function for KPCA based nonlinear process monitoring [J]. Chemical Engineering Research & Design, 2009, 87(11A): 1471-1480.
  • 2Zou X, Deng Z, Ge M, et al. GPS data processing of networks with mixed single-and dual-frequency receivers for deformation monitoring [J]. Advances in Space Research, 2010, 46(2): 130-135.
  • 3Barnet V, Lewis T. Outlier in Statistical Data [M]. New York: John Wiley & Sons, 1994.
  • 4Knorr E M, Ng R T. Finding intentional knowledge of distance-based outliers [C] //Proc of the 25th Int Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann, 1999:211-222.
  • 5Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets [C] //Proc of the ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2000:427-438.
  • 6Markou M, Singh S. Novelty detection: A review--part 2: neural network based approaches [J]. Signal Processing, 2003, 83(12): 2499-2521.
  • 7Mourao-Miranda J, Hardoon D R, Hahn T, et al. Patient classification as an outlier detection problem: An application of the one-class support vector machine [J]. Neuroimage, 2011, 58(3): 793-804.
  • 8Wang J S, Chiang J C. A cluster validity measure with outlier detection for support vector clusteriag [J]. IEEE Trans on Systems Man and Cybernetics, Part B-Cybernetics, 2008, 38(1): 78-89.
  • 9Percival D B, Walden A T. Wavelet Methods for Time Series Analysis [M]. Cambridge: Cambridge University Press, 2006.
  • 10Mallat S, Hwang W L. Singularity detection and processing with wavelets [J]. IEEE Trans on Information Theory, 1992, 38(2): 617-642.

共引文献36

同被引文献62

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部