期刊文献+

基于ANN的电力工程造价预测模型的建立与实现 被引量:10

Establishment and realization of ANN-based cost forecasting model of electric power engineering
下载PDF
导出
摘要 传统概预算定额电力工程造价方法在没有工程细节时,存在估计偏差大且无法利用历史数据的问题。文中根据人工神经网络(ANN)的机器学习机制提出一种基于ANN的电力工程造价预测模型,将历史数据样本归一化作为输入,通过ANN算法对网络进行训练,采用训练后的网络来对工程造价进行估算。文中进行了多个电力工程造价的预测,得到的预测结果与实际造价相差小于5%,满足经验误差要求。 The traditional electric power engineering method for preliminary budget and ration has big estimation error in the absence of engineering details, and can't make use of the historical data, so an ANN-based cost forecasting model of elec- tric power engineering is proposed according to the machine learning mechanism of artificial neural network (ANN). The histori- cal data samples are normalized, and taken as the input of the model. The network is trained with ANN algorithm to estimate the engineering cost. A number of electric power engineering costs are predicted in this paper. The difference of the predicted re- sult and actual cost is less than 5%, which can meet the requirement of empirical error.
出处 《现代电子技术》 北大核心 2017年第24期166-168,共3页 Modern Electronics Technique
基金 国家自然科学基金(61372071)
关键词 电力工程 预测模型 人工神经网络 机器学习 electric power engineering prediction model artificial neural network machine learning
  • 相关文献

参考文献4

二级参考文献35

  • 1宋巨龙,钱富才.基于黄金分割的全局最优化方法[J].计算机工程与应用,2005,41(4):94-95. 被引量:35
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:389
  • 3飞恩科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
  • 4Papathanassiou S,Hatziargyriou N,Strunz K.A benchmark low voltage microgrid network[C]//CIGRE Symposium,Athens,Greece:2005.
  • 5Qiong Cui,Jie Shu,Xianyong Zhang,et al.The application of improved BP neural network for power load forecasting in the island microgrid system[C]//International Conference on Electrical and Control Engineering,Yichang,China:2011.
  • 6Amjady N,Keynia F,Zareipour H.Short-term load forecast of microgrids by a new bilevel prediction strategy[J].IEEE Trans on Smart Grid,2010,1(3):286-294.
  • 7Li Xingpei,Liu Yibing,Xin Weidong.Wind speed prediction based on genetic neural network[C]//4th IEEE Conference on Industrial Electronics and Applications,Xi'an,China:2009.
  • 8Lee K Y,Cha Y T,Park J H.Short-term load forecasting using an artificial neural network[J].IEEE Trans on Power Systems,1992,7 (1):124-132.
  • 9Xu Fang-Yuan,Leung M C,Zhou Long.A RBF network for short-term load forecast on microgrid[C]//International Conference on Machine Learning and Cybernetics,Qingdao,China:2010.
  • 10Costa P M,Matos M A.Assessing the contribution of microgrids to the reliability of distribution networks[J].Electric Power Systems Research,2009,79(2):382-389.

共引文献18

同被引文献58

引证文献10

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部