摘要
基于ITD方法的线性变换和Akima插值,提出了一种改进的固有时间尺度分解方法(Improve Intrinsic Timescale Decomposition,简称IITD)方法。齿轮振动信号具有非平稳特征,其典型的故障样本难以获取,为此进一步提出了一种基于IITD样本熵和支持向量机的齿轮故障诊断方法。采用IITD法对非平稳的原始加速度振动信号进行分解,并提取包含主要故障特征信息的PR分量,将其样本熵值作为特征向量;然后将特征向量输入到支持向量机中识别齿轮的故障特征。实验分析结果表明:相比BP神经网络,能更有效地应用于齿轮的故障诊断。
An improve intrinsic time-scale decomposition (IITD) was proposed based on the linear transformation of ITD method and akima interpolation. Gear vibration signals has the characteristics of non-stationary, the typical fault samples are difficult to obtain, then a method of gear fault diagnose based on IITD sample entropy and support vector machine (SVM) was put forward. Firstly, the original acceleration vibration signal was decomposed by IITD; Then the RP containing the abundant fault characteristic information were chosen to calculate the sample entropy and form a feature vector; Finally SVM method was used as a classifier to identify different faults.Practical examples showed that the diagnosis approach proposed here can identify gear fault patterns effectively, compared to BP neural network.
出处
《机械设计与制造》
北大核心
2017年第12期212-215,219,共5页
Machinery Design & Manufacture
基金
国家自然科学基金项目(11072078)
关键词
固有时间尺度分解
固有旋转分量
样本熵
支持向量机
故障诊断
Intrinsic Time-Scale Decomposition
Proper Rotation Component
Sample Entropy
Support Vector Mac-hine
Fault Diagnosis