期刊文献+

基于IITD样本熵和支持向量机的齿轮故障诊断方法 被引量:4

A Gear Fault Diagnosis Method Based on IITD Sample Entropy and SVM
下载PDF
导出
摘要 基于ITD方法的线性变换和Akima插值,提出了一种改进的固有时间尺度分解方法(Improve Intrinsic Timescale Decomposition,简称IITD)方法。齿轮振动信号具有非平稳特征,其典型的故障样本难以获取,为此进一步提出了一种基于IITD样本熵和支持向量机的齿轮故障诊断方法。采用IITD法对非平稳的原始加速度振动信号进行分解,并提取包含主要故障特征信息的PR分量,将其样本熵值作为特征向量;然后将特征向量输入到支持向量机中识别齿轮的故障特征。实验分析结果表明:相比BP神经网络,能更有效地应用于齿轮的故障诊断。 An improve intrinsic time-scale decomposition (IITD) was proposed based on the linear transformation of ITD method and akima interpolation. Gear vibration signals has the characteristics of non-stationary, the typical fault samples are difficult to obtain, then a method of gear fault diagnose based on IITD sample entropy and support vector machine (SVM) was put forward. Firstly, the original acceleration vibration signal was decomposed by IITD; Then the RP containing the abundant fault characteristic information were chosen to calculate the sample entropy and form a feature vector; Finally SVM method was used as a classifier to identify different faults.Practical examples showed that the diagnosis approach proposed here can identify gear fault patterns effectively, compared to BP neural network.
出处 《机械设计与制造》 北大核心 2017年第12期212-215,219,共5页 Machinery Design & Manufacture
基金 国家自然科学基金项目(11072078)
关键词 固有时间尺度分解 固有旋转分量 样本熵 支持向量机 故障诊断 Intrinsic Time-Scale Decomposition Proper Rotation Component Sample Entropy Support Vector Mac-hine Fault Diagnosis
  • 相关文献

参考文献7

二级参考文献61

  • 1程军圣,于德介,杨宇.基于EMD和分形维数的转子系统故障诊断[J].中国机械工程,2005,16(12):1088-1091. 被引量:22
  • 2李辉,郑海起,唐力伟.基于EMD和功率谱的齿轮故障诊断研究[J].振动与冲击,2006,25(1):133-135. 被引量:41
  • 3Huang N E, Shen Z, I.ong S R, et al. The empirical mode decomposition and the Hilbert spectrum for non- linear and non- stationary time series analysis [J]. Proceeding of Royal Society Lond. A, 1998(454):903-995.
  • 4Frei M G, Osorio I. Intrinsic time- scale decomposition: time - frequency- energy analysis and real - time filtering of non - stationary signals [J]. Proceeding of Royal Society Lond. A, 2007(463) :321 - 342.
  • 5Huang N E, Wu Z H, Long S R, et al. On Instantaneous Frequency[J]. Advances in Adaptive Data Analysis, 2009( 1 ):177- 229.
  • 6Lempel A, Ziv J. On the complexity of finite se- quences[J].IEEE Transactions on Information Theo- ry, 1976, 22 (1):75-81.
  • 7Pincus S M. Approximate entropy as a complexity measure[J]. Chaos, 1995, 5 (1) :110-117.
  • 8Richman J S, Moorman J R. Physiological time series analysis using approximate entropy and sample en- tropy [J].American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6): 2039-2049.
  • 9Yan Ruqiang, Gao R X. Approximate entropy as a di- agnostic tool for machine health monitoring[J]. Me- chanical Systems and Signal Processing, 2007,21(2) : 824-839.
  • 10Lake D E, Richman J S, Griffin M P, et al. Sample entropy analysis of neonatal heart rate variability[J]. American Journal of Physiology-Regulatory, Inter- grative and Comparative Physiology, 2002, 283(3): 789-797.

共引文献174

同被引文献32

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部