期刊文献+

Hydrogenated vanadium oxides as an advanced anode material in lithium ion batteries 被引量:2

Hydrogenated vanadium oxides as an advanced anode material in lithium ion batteries
原文传递
导出
摘要 Current research on vanadium oxides in lithium ion batteries (LIBs) considers them as cathode materials, whereas they are rarely studied for use as anodes in LIBs because of their low electrical conductivity and rapid capacity fading. In this work, hydrogenated vanadium oxide nanoneedles were prepared and incorporated into freeze-dried graphene foam. The hydrogenated vanadium oxides show greatly improved charge-transfer kinetics, which lead to excellent electrochemical properties. When tested as anode materials (0.005-3.0 V vs. Li/Li+) in LIBs, the sample activated at 600℃ exhibits high specific capacity (-941 mA-h-g-1 at 100 mA.g-1) and high-rate capability (-504 mA·h·g-1 at 5 A·g-1), as well as excellent cycling performance (-285 mA.h.g-1 in the 1,000th cycle at 5A-g-1). These results demonstrate the promising application of vanadium oxides as anodes in LIBs. Current research on vanadium oxides in lithium ion batteries (LIBs) considers them as cathode materials, whereas they are rarely studied for use as anodes in LIBs because of their low electrical conductivity and rapid capacity fading. In this work, hydrogenated vanadium oxide nanoneedles were prepared and incorporated into freeze-dried graphene foam. The hydrogenated vanadium oxides show greatly improved charge-transfer kinetics, which lead to excellent electrochemical properties. When tested as anode materials (0.005-3.0 V vs. Li/Li+) in LIBs, the sample activated at 600℃ exhibits high specific capacity (-941 mA-h-g-1 at 100 mA.g-1) and high-rate capability (-504 mA·h·g-1 at 5 A·g-1), as well as excellent cycling performance (-285 mA.h.g-1 in the 1,000th cycle at 5A-g-1). These results demonstrate the promising application of vanadium oxides as anodes in LIBs.
出处 《Nano Research》 SCIE EI CAS CSCD 2017年第12期4266-4273,共8页 纳米研究(英文版)
关键词 HYDROGENATION vanadium oxides 3D structure rechargeable lithium ionbattery (LIB) anode hydrogenation,vanadium oxides,3D structure,rechargeable lithium ionbattery (LIB) anode
分类号 O [理学]
  • 相关文献

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部