期刊文献+

抗病毒类化合物结构与离解速率的关系

Relationship Between Structure and Dissociation Rates of Antiviral Compounds
下载PDF
导出
摘要 为了解决如何筛选出更加有效的抗病毒类化合物的问题,研究了离解速率(k_(off))与抗病毒类药物结构的关系,理论依据是k_(off)常用于评价药物在人体开放性系统中的活性.首先,应用分子描述符软件计算出每个抗病毒类化合物的分子描述符,并使用多元逐步回归分析法、偏最小二乘法和遗传算法3种方法对描述符进行筛选.然后,分别采用支持向量机和BP神经网络方法建立抗病毒类化合物的k_(off)的预测模型,并用测试集对模型进行了验证.结果表明:筛选出了具有良好预测能力的描述符,建立的2个预测模型经验证均合理,对未来抗病毒类药物的研制具有指导意义. To solve the problem of how to screen out more effective antiviral compounds,the relationship between dissociation rate( koff) and antiviral drug structure was studied in this research. The theoretical basis is that koff is often used to evaluate the activity of the drug in the open system of the human body.The molecular descriptor of each antiviral compound was calculated by using molecular descriptor software,and the descriptors were screened by multiple stepwise regression analysis,partial least squares method and genetic algorithm. Then,the support vector machine( SVM) and BP neural network were used to establish the prediction model of antiviral compound structure and dissociation rate koff value,and the model was verified. Results show that this experiment screens out the descriptors with good predictive power,and the two predictive models are proved to be reasonable and have guiding significance for the future development of antiviral drugs.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2017年第12期1857-1864,共8页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(21173014) 北京高等学校高水平人才交叉培养"实培计划"项目
关键词 抗病毒化合物 结合动力学 离解速率 支持向量机 BP神经网络 antiviral chemicals binding kinetics dissociation rate support vector machine back propagation neural network
  • 相关文献

参考文献4

二级参考文献27

  • 1杨晓红,刘乐善.用遗传算法优化神经网络结构[J].计算机应用与软件,1997,14(3):59-65. 被引量:18
  • 2Rumelhart D E,McClelland J L. Parallel distributed processing. MA:MIT press,Cambridge, 1986,1(2):125-187.
  • 3Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation in Parallel Distributed Processing. Rumelhart D E and McClelland J L, Eds. Cambridge, MA: MIT press,1986. 318-362.
  • 4Medsker T. Neural network simulation environments. Massachusetts : Kluwer Academic Publishers, 1993.212-325.
  • 5William C Carpenter,Marcerry E Hoffman. Guideline for the selection of network architecture. Artificial Intelligence for Engineering Design analysis and Manufacturing. 1997,11 (5) :395-408.
  • 6Hecht Nielsen R. Counter propagation Networks.Applied Optics, 1987,26(12):4979-4984.
  • 7Lippmann R P. An introduction to computer with neural nets. IEEE ASSP Magazine, 1987 (4) : 4-22.
  • 8PAN AC, BORHANI DW, DROR RO, et al. Molecular determi- nants of drug-receptor binding kinetics [ J ]. Drug Discov Today, 2013, 18( 13 - 14) :667 -673.
  • 9TUMMINO PJ, COPELAND RA. Residence time of receptor-lig- and complexes and its effect on biological function[ J]. Biochem- istry, 2008, 47(20) : 5481 -5492.
  • 10COPELAND RA. Conformational adaptation in drug-target inter- actions and residence time [J]. Future Med Chem, 2011, 3 (12) :1491 - 1501.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部