期刊文献+

基于自适应LARK特征的图像显著性检测算法

Saliency Detection Based on Adaptive LARK Features
下载PDF
导出
摘要 为了有效检测自然场景中的显著区域,提出一种简单高效的基于自适应LARK特征的图像显著性检测方法。首先自适应选取若干个有效的LARK特征分量,然后计算基于该特征的像素显著性值。为进一步增强图像像素的显著性,通过经典的超像素分割方法计算图像的超像素颜色奇异性值。最后将这两者线性融合,形成自然场景中像素的最终显著性值。在国际通用数据集上测试,结果表明,该方法优于其他视觉显著区域检测计算方法,并且可以产生均匀突出的显著性图谱,在正确率和召回率上都有明显提高。 A simple and efficient salient region detection method based on adaptive LARK features is proposed to effectively detect the salient region in the natural scene.Firstly,certain effective LARK features are adaptively selected,and then the salient values are computed based on these features.To further enhance the saliency of the image,color uniqueness values of the image are computed by the classical super pixel segment method.Finally,the final salient map is obtained by linearly fusing both feature values.Experimental results on the largest publicly available data sets demonstrate that the proposed method outperforms the state-of-the-art detection methods and can generate the uniformly highlighting salient region.Furthermore,the precision and recall rates are obviously improved.
出处 《常州工学院学报》 2017年第4期23-27,共5页 Journal of Changzhou Institute of Technology
基金 江苏省高等学校自然科学研究面上项目(16KJB520002 17KJB416001) 江苏省产学研前瞻性联合研究项目(BY2014040)
关键词 显著性检测 LARK特征 颜色奇异性 saliency detection LARK feature color uniqueness
  • 相关文献

参考文献3

二级参考文献32

  • 1Itti L. Models of bottom-up E D ]. California: Computat Technol, Pasadena, 2000. and top-down visual attention Neur.
  • 2Syst., California Inst. Itti L, Koch C, Niebur E. Model of saliency-based visual attention for rapid scene analysisl-J]. IEEE Trans. Pattern Anal. Mach. Intell, 1998,20(11) : 1254-1259.
  • 3Harel J, Koch C, Perona P. Graph-based visual saliency [J]. Advances in neural information processing systems, 2007,19:545-552.
  • 4Yang C, Zhang L. Saliency detection via graph-based manifold rankingl-A~. Proc. of Computer Vision and Pat- tern Recognition, IEEE Conference on l-C]. 2013, 3166- 3173.
  • 5Hou X, Zhang L. Saliency detection= A spectral residual approachrA]. Proc. of Computer Vision and Pattern Rec- ognition, IEEE Conference onEC]. 2007,1-8.
  • 6Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[A~. Proc. of Computer Vision and Pattern Recognition, IEEE Conference on[C]. 2009, 1 597- 1604.
  • 7Maybank S. A probabilistic definition of salient regions forimage matching[J]. Nuerocomputing, 2013,120 ( 23 ) : 4- 14.
  • 8Yang J,Yang M. Top-down visual saliency via joint CRF and dictionary learningI-A-I. Proc. of Computer Vision and Pattern Recognition, IEEE Conference on~C~. 2012,2296- 2303.
  • 9Cui J,Xie J. Corner detection on finger vein images using the improved Harris algorithmI-J~. Optik, 2014,125 ( 17 ) 4668-4671.
  • 10Yang C, Zhang L. Graph-regularized saliency detection with convex-hull-based center prior[J]. IEEE Signal Pro- cessing Letters,2013,20(7) ..637-640.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部