期刊文献+

基于多模板的深度核相关滤波跟踪

Depth kernel correlation filtering tracking based on multi-template
下载PDF
导出
摘要 针对跟踪过程中出现的遮挡、尺度变化、光照变化等问题,文章基于多模板提出深度核相关滤波算法。首先,多模板算法选取最佳滤波参数优化分类器训练样本的能力,多特征算法利用多种特征优化目标外观模型提高了跟踪过程的鲁棒性;其次,利用深度图信息计算跟踪过程中目标重叠率,判断目标的遮挡情况,遮挡时重新定义目标搜索区域,并判断是否重新跟踪目标,降低遮挡情况下的算法漂移问题;最后,根据目标遮挡情况判断是否更新分类器参数和目标外观模型,提高模板更新的可靠性。利用Princeton数据库测试算法,成功率和精度分别达到85.1和98.6,比第二名算法分别提高了7.04%和4.67%。实验从成功率、精确度方面说明基于多模板的深度核相关滤波算法优于传统算法,有一定研究价值。 Aiming at the problems of occlusion,scale transformation and illumination change in the tracking process,a depth kernel correlation filtering algorithm is proposed based on the multi-template.Firstly,the multi-template algorithm selects the best filtering parameters to optimize the ability of the classifier training samples.The various features are used to optimize the target appearance model which improves the robustness of the multi-feature algorithm.Then,in the tracking process,the depth map information is applied to calculate the target overlap rate which is employed to judge whether the tracking target is occluded.When occlusion occurs,the target search area is redefined,and the target is judge whether to track gain.So it reduces the problem of algorithm drift in the case of occlusion.Finally,according to whether or not occlusion occurs,the classifier parameters and target appearance model are determined whether to update.It improves the reliability of template updates.Using the Princeton database test algorithm,the success rate and accuracy is 85.1% and 98.6% respectively,which is 7.04% and 4.67% higher than the second algorithm respectively.Experimentsshow that the depth kernel correlation filtering algorithm based on multi-template is superior to the traditional algorithm,and has certain research value.
出处 《液晶与显示》 CAS CSCD 北大核心 2017年第12期993-998,共6页 Chinese Journal of Liquid Crystals and Displays
基金 国家自然科学基金项目(No.61203076) 河北省自然科学基金项目(No.F2017202009)~~
关键词 目标跟踪 多模板 深度信息 重叠率 target tracking multi-template depth information overlap
  • 相关文献

参考文献3

二级参考文献52

  • 1KAPUR J N. A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics, and Image Pro cessing, 1985, 29(3):273-285.
  • 2BRINK A D. Thresholding of digital images using Two-dimensional entropies [J].Patlern Recogni- tion, 1992, 25(8): 803-808.
  • 3PEDRAMG, M1CAELSC, JONAB, eta&. Anef ficient method for segmentation of images based on fractional calculus and natural selecfion[J]. Erpert Systems uitk AppZications, 2012, 89: 12407-12417.
  • 4HORNG M H. Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization [J]. E.cpert System with Applica- tions, 2010, 37(6):4580-4592.
  • 5I.AN J H,ZENG Y L. Multi-threshold image seg- mentation using maximum fuzzy entropy based on a new 2D histogram [J]. Optilelnt. J. Ligkt Elec- tron Opt. , 2013,124(18):3756-3760.
  • 6YANG X SH. Firefly algorithms for multimodal optimization [C]. In Stochastic Algorithms Foun- dations and Applications, SAGA 2009, Lecture Notes in Computer Sciences, 2009, 5792:169-178.
  • 7LUKASIK S, ZAK S. Firefly algorithm for con tinuous constrained optimization tasks [C]. Com- putational Col&ctive Intelligence. Semantic Web, Social Netzvorks and Multiagent Systems Lecture Notes in Computer Science, 2009, 5796:97-106.
  • 8HORNG M H, IAOU R J, Multilevel minimum cross entropy threshold selection based on the fire fly algorithm[J]. Expert Systems zc, ith Applica- tions, 2011, 38: 14805-14811.
  • 9Cheng 1. J, Ding Y S, Hao K R, et al. An ensemble kernel classifier with immune clonal selection algorithm for au tomatic discriminant of primary open angle glaucoma [J]. Neuro Computing, 2012, 83(4) : 1-11.
  • 10Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to mage seg mentation [J].IEEETransactlons on Pattern Analysis and Machine Intelligence, 1993, 15(11):1101- 1113.

共引文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部