期刊文献+

自相似常数和定量差异及其在体育科学中的应用 被引量:16

Self-similar constant and quantitative difference as well as their applications in sports science
下载PDF
导出
摘要 传统的统计方法可以得出两组数据的定性分布差异,而定量差异(QD)可以得出它们的平均值差异。以黄金分割常数为底的对数称为黄金对数,研究发现一个新的自然常数可以表示黄金分割常数,且黄金对数保持不变,称其为自相似常数。自相似常数不但能表示部分基本物理常数,而且能表示部分运动记录和生理极限。用自相似常数表示QD在分子细胞水平、组织器官水平和整体水平功能3个方面与运动成绩的特征参数,并讨论了QD在体育科学中的初步应用。 As for two sets of data, their qualitative distribution difference can be derived by using traditional statis-tical methods, while their mean value difference can be derived from quantitative difference (QD). A base-golden ratio logarithm is called as a golden logarithm, the authors found that a new natural constant can express the golden ratio, and its golden logarithm maintains unchanged, and called it as self-similar constant. The self-similar constant can not only express some fundamental physical constants, but also express some sports records and physiological limits. The authors used the self-similar constant to express the QD in athletic performance characteristic parameters in such 3 aspects as molecular cell level, tissue or organ level and overall level, and further discussed the QD’s pre-liminary applications in sports science.
出处 《体育学刊》 CAS CSSCI 北大核心 2017年第6期72-78,共7页 Journal of Physical Education
基金 国家重点研发计划项目(2017YFB0403800)
关键词 体育统计 定量差异 自相似常数 黄金对数 运动成绩 sports statistics quantitative difference self-similarity constant golden logarithm athletic performance
  • 相关文献

参考文献1

二级参考文献31

  • 1OSBORNE J W. Challenges for quantitative psy- chology and measurement in the 21 st century[J]. Front Psychol, 2010, 3(8): 1-3.
  • 2WOOLSTON C. Psychology journal bans P values[J] Nature, 2015, 519(7541): 9.
  • 3LEEK J T, PENG R D. Opinion: reproducible research can still be wrong: adopting a prevention approach[J]. Proc NatlAcad Sci USA, 2015, 112(6): 1645-1646.
  • 4LEEK J T, PENG R D. Statistics: what is the ques- tion? [J]. Science, 2015, 347(6228): 1314-1315.
  • 5LEEK J T, PENG R D. Statistics: pvalues are just the tip of the iceberg[J]. Nature, 2015, 520(4): 612.
  • 6WEISSGERBERTL, MILICNM, WINHAMSJ, et al. Beyond bar and line graphs: time for a new data presentation paradigm[J]. PLoS Biol, 2015, 13(4): e1002128.
  • 7JEAN R. Phyllotaxis: A Systematic Study of Plant Morphogenesis[M]. Cambridge: Cambridge University Press, 1994.
  • 8LI C, ZHANG X, CAO Z. Triangular and Fibonacci number patterns driven by stress on core/shell micro- structures[J].Science, 2005, 309(5736): 909-911.
  • 9PENNYBACKER M, NEWELL A C. Phyllotaxis, pushed pattern-forming fronts, and optimal packing[J]. PhysRevLett, 2013, 110(24): 248104.
  • 10IOSAM, FUSCO A, MARCHETTI F, et al. The golden ratio of gait harmony: repetitive proportions of repetitive gait phases[J]. Biomed Res Int, 2013 : 918642.

共引文献17

同被引文献97

引证文献16

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部