期刊文献+

“互联网+测评”中的数据有效性分析 被引量:3

Data Validation for Online Assessments
下载PDF
导出
摘要 "互联网+测评"是当今特别热门的话题之一。但是,在线测评在测量信度、效度和公平性方面的问题也十分突出,而导致这些问题的一个重要因素就是测评数据的有效性不够。文章认为,在线测评中数据的有效性问题主要包括数据缺失和作答失真两种类型,并分别从统计学和教育测量学角度,对数据缺失和数据失真问题提出了具体的处理办法,同时提供了一个实例分析和一个估计缺失数据的SAS程序。 “Internet + testing” ,or taking assessments online,is a new and fast growing trend in China. However, the reliability, validity and fairness of the online assessments may be poor due to invalid item responses, which are typically caused by missing data or fake item responses. This paper discusses solutions to data verification and missing data imputation using traditional statistical methods and the item response theory. One empirical study is introduced, and a SAS macro program for imputing missing data is provided.
作者 杨志明 杨婷
出处 《教育测量与评价》 2017年第12期5-12,共8页 Educational Measurement and Evaluation
关键词 互联网+ 在线测评 数据缺失 作答失真 Internet + ,online assessment,data missing,fake item responses
  • 相关文献

参考文献2

二级参考文献14

  • 1Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 17, 251-269.
  • 2Huisman, M. (2000). Imputation of missing item responses: some simple techniques. Quality and Quantity, 34, 331-351.
  • 3Jones, D. H., & Nediak, M. (2000). Item parameter calibration of LSAT items using MCMC approximation of Bayes posterior distributions. Rutcor research report, 7-2000.
  • 4Karkee, T., & Finkelman, M. (2007, April). Missing Data treatment Methods in Parameter Recovery for a Mixed-Format Test. Paper presented at the annual meeting of the American Educational Research Association, Chicago.
  • 5利特尔,鲁宾.(2004).缺失数据统计分析.(孙山泽译). 北京:中国统计出版社.
  • 6Ludlow, L. H., & O’Leary M. (1999). Scoring omitted and not-reached items: practical data analysis implications. Educational and Psychological Measurement, 59, 615-630.
  • 7Maris, G., & Bechger, T. M. (2005). An introduction to the DA-T Gibbs sampler for the two-parameter logistic (2PL) model and beyond. Psicológica, 26, 327-352.
  • 8Muraki, E., & Bock, R. D. (1993). PARSCALE: IRT based test scoring and item analysis for graded open-ended exercises and performance tasks. Chicago: Scientific software Int.
  • 9Patz, R. J., & Junker, B. W. (1999a). A straightforward approach to markov chain monte carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146-178.
  • 10Patz, R. J., & Junker, B. W. (1999b). Applications and extensions of MCMC in IRT: multiple item types, missing data, and rated responses. Journal of Educational and Behavioral Statistics, 24, 342-366.

共引文献19

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部