期刊文献+

标准模型下格上基于身份的盲签名方案 被引量:3

Lattice-Based Identity-Based Blind Signature Scheme in Standard Model
下载PDF
导出
摘要 随机预言模型下的盲签名方案都依赖于随机预言假设,即使方案被证明安全,在实际应用时未必安全。构造了一个标准模型下格上基于身份的盲签名方案。该方案中引入一个短格基派生算法,根据用户的身份产生对应的私钥,并利用Gentry等人提出的原像抽样陷门单向函数产生消息的签名。在标准模型下依据Juels和Pointcheval等人提出的安全模型,基于小整数解问题(small integer solutions,SIS)的困难性,证明了该方案满足one-more不可伪造性。分析表明,与同类方案相比,该方案密钥长度和签名长度有所减小,效率更高。 The blind signature scheme in the random oracle model relies on the random oracle assumption. The scheme is proven to be secure in theory, but it may not be secure in practice. This paper constructs an identity-based blind signature scheme with lattice in the standard model. A short basis delegation algorithm is introduced to generate the private key. The signature of the message is generated by the forward sampling algorithm proposed by Gentry et al.Under the standard hardness assumption of the small integer solutions problem(SIS), the new scheme is proven to be one-more unforgeable based on Juels and Pointcheva's security model in the standard model. The comparison results show that the key length and signature length are shorter, and the efficiency is higher.
出处 《计算机科学与探索》 CSCD 北大核心 2017年第12期1965-1971,共7页 Journal of Frontiers of Computer Science and Technology
基金 国家密码管理局"十三五"国家密码发展基金No.MMJJ20170122 河南省科技厅项目No.142300410147 河南省教育厅项Nos.12A520021 16A520013 河南理工大学博士基金No.B2014-044~~
关键词 基于身份 标准模型 盲签名 lattice identity-based standard model blind signature
  • 相关文献

参考文献2

二级参考文献21

  • 1Chaum D. Blind Signatures for Untraceable Payments[C]. Crypto 1982, California,1983.
  • 2Camenisch J,Koprowski M, Warinschi B. Effcient Blind Signatures Without Random Oracles[C]. Security in Communicalion Networks, Amalfi, Italy, 2004.
  • 3Okamoto T. Efficient Blind and Partially Blind Signatures Without Random Oracles[C]. Theory of Cryptography Conference (TCC) 2006, LNCS 3876, New York,2006.
  • 4Bresson E, Monnerat J, Vergnaud D. Separation Results on the One More Computational Problems [C]. RSA Conference (CT-RSA) 2008, San Francisco, CA,2008.
  • 5Shor P W. Polynomial time Algorithm for Prime Factorizeation and Discrete Logarithm on a Quan rum Computer [J]. SIAM Journal on Computing, 1997, 26(5):1 484 -1 509.
  • 6Lyubashevsky V, Micciancio D. Asymptotically Efficient Lattice Based Digital Signature[C].TCC2008, LNCS 4948, New York,2008.
  • 7Regev O. On Lattice, I.earning with Errors, Random Linear Codes, and Cryptography[C].STOC'05, Baltimore, 2005.
  • 8Gentry C, Peikert C, Vaikuntanathan V . Trapdoors for Hard Lattices and New Cryptographic Constructions[C]. STOC2008, Victoria, British Columbia, 2008.
  • 9Atwen J, Peikert C. Generating Shorter Bases for Hard Random Lattices[C].STACS, Freiburg, 2009.
  • 10Ruckert M. Lattice-based Blind Signatures[OL]. http ://eprint. iaer. org. 2008/322,2008.

共引文献52

同被引文献9

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部